Skip to main content

Stars sparkle in Orion Nebula in this week’s gorgeous Hubble image

The Hubble Space Telescope is one of the great achievements in modern astronomy, still producing stunning and scientifically valuable images after more than 30 years of operation. Each week, scientists working with Hubble share an image captured by the telescope, and this week’s image shows a snippet of a famous nebula along with two bright stars.

The image shows a part of the beautiful Orion Nebula, featuring the bright star V 372 Orionis just to the lower-right of the center along with a companion star to the top-left. The Orion Nebula is located 1,450 light-years away and is famous as a stellar nursery where large numbers of new stars are born.

The bright variable star V 372 Orionis takes center stage in this image from the NASA/ESA Hubble Space Telescope, which has also captured a smaller companion star in the upper left of this image. Both stars lie in the Orion Nebula, a colossal region of star formation roughly 1,450 light-years from Earth.
The bright variable star V 372 Orionis takes center stage in this image from the NASA/European Space Agency Hubble Space Telescope, which has also captured a smaller companion star in the upper-left of this image. Both stars lie in the Orion Nebula, a colossal region of star formation roughly 1,450 light-years from Earth. ESA/Hubble & NASA, J. Bally, M. Robberto

The star V 372 Orionis is of a particular type called a variable star, meaning that its brightness changes over time. Certain variable stars, called Cepheid variables, are especially important to astronomy because they brighten in a particular way, which means they can be used to accurately estimate distances to extremely far-off galaxies. V 372 Orionis is a different type of variable, however, called an Orion variable.

Orion variables brighten and dim in an irregular manner, undergoing occasional eruptions in which they become significantly brighter than usual for a short time. They are often found within nebulae, like the Orion Nebula, where there are many young stars. It is believed that these eruptive stars are young and that they will settle into a less variable state as they get older.

The image of the stars within the nebula was taken using two Hubble instruments, the Advanced Camera for Surveys and Wide Field Camera 3. Although Hubble primarily looks in the visible light wavelengths, which are equivalent to what would be seen by the human eye, it can also look in some parts of the infrared and ultraviolet spectrums. This particular image brings together data from both visible light and infrared observations, allowing the telescope to capture both the stars and the swirls of dust and gas in which they reside.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
James Webb detects important molecule in the stunning Orion nebula
This image is NIRCam’s view of the Orion Bar region studied by the team of astronomers. Bathed in harsh ultraviolet light from the stars of the Trapezium Cluster, it is an area of intense activity, with star formation and active astrochemistry. This made it a perfect place to study the exact impact that ultraviolet radiation has on the molecular makeup of the discs of gas and dust that surround new stars. The radiation erodes the nebula’s gas and dust in a process known as photoevaporation; this creates the rich tapestry of cavities and filaments that fill the view. The radiation also ionises the molecules, causing them to emit light — not only does this create a beautiful vista, it also allows astronomers to study the molecules using the spectrum of their emitted light obtained with Webb’s MIRI and NIRSpec instruments.

The Orion Nebula is famous for its beauty, but it was also the site of a recent exciting scientific discovery. The James Webb Space Telescope has detected an important molecule in a planet-forming disk of debris within the nebula. The molecule, called methyl cation (CH3+), is a carbon compound that is important for the formation of life and has never been observed in space before.

This image is NIRCam’s view of the Orion Bar region studied by the team of astronomers. Bathed in harsh ultraviolet light from the stars of the Trapezium Cluster, it is an area of intense activity, with star formation and active astrochemistry. This made it a perfect place to study the exact impact that ultraviolet radiation has on the molecular makeup of the discs of gas and dust that surround new stars. ESA/Webb, NASA, CSA, M. Zamani (ESA/Webb), the PDRs4All ERS Team

Read more
Gorgeous images of Jupiter’s cloud tops snapped by Juno spacecraft
Bands of high-altitude haze forming above cyclones in an area of Jupiter known at Jet N7.

NASA's Juno mission has become a favorite among space fans for its JunoCam instrument which often captures gorgeous images of the beauty of the planet Jupiter and its moons. Earlier this year the spacecraft made its 49th close flyby of the planet, and NASA recently released some more stunning images taken as it whizzed by the planet's cloud tops.

The first image was taken as the spacecraft made its close flyby on March 1, showing the complex structures in the cloud tops of the planet's atmosphere. NASA explains that the image shows "bands of high-altitude haze forming above cyclones in an area known as Jet N7." Cyclones are a common feature on Jupiter, particularly near the poles, and a formed due to differences in atmospheric pressure which cause parts of the atmosphere to rotate. Here you can see a number of cyclones, which rotate clockwise, but it is also common to observe anticyclones, which rotate counterclockwise.

Read more
Hubble image of the week shows an unusual jellyfish galaxy
The jellyfish galaxy JO206 trails across this image from the NASA/ESA Hubble Space Telescope, showcasing a colorful star-forming disk surrounded by a pale, luminous cloud of dust. A handful of foreground bright stars with crisscross diffraction spikes stands out against an inky black backdrop at the bottom of the image. JO206 lies over 700 million light-years from Earth in the constellation Aquarius.

This week's image from the Hubble Space Telescope shows an unusual type of galaxy named for its aquatic look-alike: a jellyfish.

The jellyfish galaxy JO206 is shown below in an image taken using Hubble's Wide Field Camera 3 instrument. Located 700 million light-years away, in the constellation of Aquarius, this image of the galaxy shows both the bright center of the galaxy and its long tendrils reaching out toward the bottom right. It is these tendrils that give jellyfish galaxies their names, and they are formed through a process called ram pressure stripping.

Read more