Skip to main content

Hubble celebrates its 31st birthday with image of a stunning but unstable star

In celebration of the 31st anniversary of the launch of the NASA/ESA Hubble Space Telescope, astronomers aimed the celebrated observatory at one of the brightest stars seen in our galaxy to capture its beauty. The giant star featured in this latest Hubble Space Telescope anniversary image is waging a tug-of-war between gravity and radiation to avoid self-destruction. The star, called AG Carinae, is surrounded by an expanding shell of gas and dust. The nebula is about five light-years wide, which equals the distance from here to our nearest star, Alpha Centauri.
In celebration of the 31st anniversary of the launch of the NASA/ESA Hubble Space Telescope, astronomers aimed the celebrated observatory at one of the brightest stars seen in our galaxy to capture its beauty. NASA, ESA and STScI

Today is the 31st anniversary of the launch of the Hubble Space Telescope, and to celebrate researchers have used the telescope to image one of the most famous stars in our galaxy. AG Carinae is one of the most luminous stars in the Milky Way, giving out an amount of light equivalent to 1 million suns. But due to the 20,000 light-years of distance and large amount of dust between it and us, it’s usually too faint to be seen with the naked eye.

The star can be seen with telescopes like Hubble though, and studying it can give information about how extreme stars develop as well as capturing a beautiful image. The image uses data from both the visible light and ultraviolet wavelengths, as looking in the ultraviolet range allows scientists to see the dust structures which surround the star in more detail.

As AG Carinae is so bright, it burns a tremendous amount of fuel and is rather unstable. Hubble scientists describe it as “prone to convulsive fits,” in which it puffs up to a larger than usual size and throws off layers of gas into space.  These eruptions can throw off a huge amount of material, expelling as much as the equivalent to 10 times the mass of the sun. When one of these enormous puffs happened 10,000 years ago, it created the beautiful shell of dust and gas which gives the star its distinctive appearance.

Stars like this don’t last for long, at least in stellar terms — with a lifespan of a few million years — because they burn through their fuel quickly and die young. The convulsive phase of such a very bright star is called a luminous blue variable, and studying these offers the chance to see stars in extreme conditions.

“I like studying these kinds of stars because I am fascinated by their instability,” said Kerstin Weis, a luminous blue variable expert at Ruhr University in Bochum, Germany, in the Hubble statement. “They are doing something weird.”

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Hubble celebrates its 33rd birthday with stunning nebula image
Astronomers are celebrating the NASA/ESA Hubble Space Telescope’s 33rd launch anniversary with an ethereal photo of a nearby star-forming region, NGC 1333. The nebula is in the Perseus molecular cloud, and is located approximately 960 light-years away.

It will soon be the 33rd anniversary of the launch of the Hubble Space Telescope, and to celebrate this milestone, Hubble scientists have shared a stunning image taken by the telescope of a picturesque nebula. NGC 1333 is a busy stellar nursery, with new stars forming among the cloud of dust and gas located 960 light-years away.

The beautiful image of the nebula shows swirls of dark dust around glowing points of light where new stars are being born. To capture this scene, Hubble used its instruments across their full wavelengths, from ultraviolet through the optical light range and into the near-infrared. Hubble took the image using its Wide Field Camera 3 instrument, which used several filter across different wavelengths that were then assigned to colors (Blue: F475W, Green: F606W, Red: F657N and F814W) to create the colorful final result.

Read more
There’s a cosmic jellyfish in this week’s Hubble image
The galaxy JW100 (lower right) features prominently in this image from the NASA/ESA Hubble Space Telescope. The streams of star-forming gas dripping from the disk of the galaxy like streaks of fresh paint are formed by a process called ram pressure stripping. Their resemblance to dangling tentacles led astronomers to refer to JW100 as a ‘jellyfish’ galaxy. JW100 is over 800 million light-years away, in the constellation Pegasus.

This week's Hubble image shows an unusual type of galaxy that might seen more at home in the ocean than among the stars: a jellyfish galaxy. These galaxies have a main body of stars, with tentacle-like structures reaching off away from the body in just one direction. This particular jellyfish galaxy, known as JW100, is located more than 800 million light-years away and is found in the constellation of Pegasus.

The jellyfish galaxy is located toward the bottom right of the image, with purple-pink tentacles of stars reaching downward. In the upper middle part of the image, you'll also see two very bright blobs, which are the core of another galaxy within the same galaxy cluster. This nearby galaxy, called IC 5338, is the brightest one within the cluster and has a large glowing area around it called a halo.

Read more
A sparkling field of stars cluster together in Hubble image
This image shows just a portion of M55, the cluster as a whole appears spherical because the stars’ intense gravitational attraction pulls them together. Hubble’s clear view above Earth’s atmosphere resolves individual stars in this cluster. Ground-based telescopes can also resolve individual stars in M55, but fewer stars are visible.

A sea of stars sparkles in this image from the Hubble Space Telescope. Showing an tremendous cluster of stars called a globular cluster, this view is located in the galaxy Messier 55.

A globular cluster is a group of stars which is tens of thousands or even millions of stars, and which is held together by gravity. That's why these clusters tend to form spherical shapes as the forces of gravity hold the cluster together.

Read more