Skip to main content

James Webb researcher reveals how it will investigate the early universe

Once the James Webb Space Telescope begins science operations this summer, it will the world’s most powerful space telescope, and it will open new avenues for astronomy research. One of the researchers who will be working with James Webb, Massimo Stiavelli, the Webb Mission Office head at the Space Telescope Science Institute, has shared more information about how Webb will look back in time at some of the earliest stars and galaxies.

Because light takes time to travel, the further away from Earth we look, the earlier we are seeing in the development of the universe. Webb will be able to see more distant galaxies than ever before, allowing researchers to get a glimpse of the early stages of the universe. By looking at the composition of these very early stars and galaxies, researchers can get an idea of what was happening in the few minutes after the Big Bang.

“The chemical composition of the early universe, just after the big bang, is the product of the nuclear processes that took place in the first few minutes of the universe’s existence,” Stiavelli said, as shared in a NASA blog post. “These processes are known as ‘primordial nucleosynthesis.’ One of the predictions of this model is that the chemical composition of the early universe is largely hydrogen and helium. There were only traces of heavier elements, which formed later in stars. These predictions are compatible with observations, and are in fact one of the key pieces of evidence that support the hot big bang model.”

Webb will be searching out examples of these very old stars to see if they support current theories about the Big Bang. “The earliest stars formed out of material with this primordial composition,” Stiavelli said. “Finding these stars, commonly dubbed as the ‘First Stars’ or ‘Population III stars,’ is an important verification of our cosmological model, and it is within reach of the James Webb Space Telescope. Webb might not be able to detect individual stars from the beginning of the universe, but it can detect some of the first galaxies containing these stars.”

Stiavelli’s project is to look at one of the furthest galaxies discovered to date, called MACS1149-JD1, using Webb. The team will measure how much of the galaxy is made up of heavier elements, using an instrument called a spectrograph, so they can confirm whether it is made up of these very early stars. The project will be a part of Webb’s first year of science operations.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Zoom into stunning James Webb image to see a galaxy formed 13.4 billion years ago
A section of a James Webb image showing a small part of the Extended Groth Strip, located between the Ursa Major and Boötes constellations.

One of the amazing things about the James Webb Space Telescope is the level of detail it is able to capture of very distant objects -- but it can be hard to picture what that means when the distances being considered are so large. Now, a new visualization gives a feel of just how detailed the data from the telescope is, by showing how it's possible to start with a stunning view of thousands of galaxies and zoom closer and closer in until you reach just one.

CEERS: Flight to Maisie's Galaxy

Read more
One galaxy, two views: see a comparison of images from Hubble and Webb
The peculiar galaxy NGC 3256 takes centre stage in this image from the NASA/ESA Hubble Space Telescope. This distorted galaxy is the wreckage of a head-on collision between two spiral galaxies which likely occurred 500 million years ago, and it is studded with clumps of young stars which were formed as gas and dust from the two galaxies collided.

It might not seem obvious why astronomers need multiple different powerful space telescopes. Surely a more powerful telescope is better than a less powerful one? So why are there multiple different telescopes in orbit, either around Earth or around the sun?

The answer is to do with two main factors. One is the telescope's field of view, meaning how much of the sky it looks at. Some telescopes are useful for looking at large areas of the sky in less detail, working as survey telescopes to identify objects for further research or to look at the universe on a large scale -- like the recently launched Euclid mission. While others, like the Hubble Space Telescope, look at small areas of the sky in great detail, which is useful for studying particular objects.

Read more
James Webb spots the most distant active supermassive black hole ever discovered
Crop of Webb's CEERS Survey image.

As well as observing specific objects like distant galaxies and planets here in our solar system, the James Webb Space Telescope is also being used to perform wide-scale surveys of parts of the sky. These surveys observe large chunks of the sky to identify important targets like very distant, very early galaxies, as well as observe intriguing objects like black holes. And one such survey has recently identified the most distant active supermassive black hole seen so far.

While a typical black hole might have a mass up to around 10 times that of the sun, supermassive black holes are much more massive, with a mass that can be millions or even billions of times the mass of the sun. These monsters are found at the heart of galaxies and are thought to play important roles in the formation and merging of galaxies.

Read more