Skip to main content

James Webb Space Telescope completes final testing ahead of launch

Finally, the big day approaches: The James Webb Space Telescope has completed its final tests and is now being prepared for its journey to its launch site. The next-generation telescope will be the successor to the venerable old Hubble Space Telescope, as well as taking over duties from the now-retired Spitzer Space Telescope.

The final round of testing includes a series of tests to ensure that the telescope will operate in space as planned. This is complex for several reasons — firstly, that the technology is cutting-edge and has to survive the extreme conditions of launch, and secondly, that the telescope needs to be folded up to fit into a rocket for launch and then unfurl itself once it is in orbit.

The James Webb telescope fully assembled and folded as it will be for launch.
Fully assembled and fully tested, the NASA/ESA/CSA James Webb Space Telescope has completed its primary testing regimen and is soon preparing for shipment to its launch site at Europe’s Spaceport in French Guiana. In this photo, Webb is folded as it will be for launch. NASA/Chris Gunn

With the tests complete and engineers confident that Webb is ready for launch, it will now be packed up and shipped to its launch site in Kourou, French Guiana.

Recommended Videos

“NASA’s James Webb Space Telescope has reached a major turning point on its path toward launch with the completion of final observatory integration and testing,” said Gregory L. Robinson, Webb’s program director in a statement. “We have a tremendously dedicated workforce who brought us to the finish line, and we are very excited to see that Webb is ready for launch and will soon be on that science journey.”

With its more powerful hardware, Webb will be able to collect more data and do new science compared to the older Hubble. For example, it will be able to see whether a distant exoplanet has an atmosphere or not and even what that atmosphere is composed of — something which is very difficult to do with currently available telescopes. The bodies organizing the launch of Webb, NASA, the European Space Agency (ESA), and the Canadian Space Agency (CSA), have already laid out plans for what Webb will study in its first year.

For the team who have worked on Webb so far, the launch date, which is set for late November or early December this year, will be a major milestone both personally and professionally. “To me, launching Webb will be a significant life event – I’ll be elated of course when this is successful, but it will also be a time of deep personal introspection. Twenty years of my life will all come down to that moment,” said Mark Voyton, Webb observatory integration and test manager at NASA’s Goddard Space Flight Center.

“We’ve come a long way and worked through so much together to prepare our observatory for flight. The telescope’s journey is only just beginning, but for those of us on the ground who built it, our time will soon come to an end, and we will have our opportunity to rest, knowing we put everything on the line to make sure our observatory works. The bonds we formed with each other along the way will last far into the future.”

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Zoom into stunning James Webb image to see a galaxy formed 13.4 billion years ago
A section of a James Webb image showing a small part of the Extended Groth Strip, located between the Ursa Major and Boötes constellations.

One of the amazing things about the James Webb Space Telescope is the level of detail it is able to capture of very distant objects -- but it can be hard to picture what that means when the distances being considered are so large. Now, a new visualization gives a feel of just how detailed the data from the telescope is, by showing how it's possible to start with a stunning view of thousands of galaxies and zoom closer and closer in until you reach just one.

CEERS: Flight to Maisie's Galaxy

Read more
One galaxy, two views: see a comparison of images from Hubble and Webb
The peculiar galaxy NGC 3256 takes centre stage in this image from the NASA/ESA Hubble Space Telescope. This distorted galaxy is the wreckage of a head-on collision between two spiral galaxies which likely occurred 500 million years ago, and it is studded with clumps of young stars which were formed as gas and dust from the two galaxies collided.

It might not seem obvious why astronomers need multiple different powerful space telescopes. Surely a more powerful telescope is better than a less powerful one? So why are there multiple different telescopes in orbit, either around Earth or around the sun?

The answer is to do with two main factors. One is the telescope's field of view, meaning how much of the sky it looks at. Some telescopes are useful for looking at large areas of the sky in less detail, working as survey telescopes to identify objects for further research or to look at the universe on a large scale -- like the recently launched Euclid mission. While others, like the Hubble Space Telescope, look at small areas of the sky in great detail, which is useful for studying particular objects.

Read more
James Webb spots the most distant active supermassive black hole ever discovered
Crop of Webb's CEERS Survey image.

As well as observing specific objects like distant galaxies and planets here in our solar system, the James Webb Space Telescope is also being used to perform wide-scale surveys of parts of the sky. These surveys observe large chunks of the sky to identify important targets like very distant, very early galaxies, as well as observe intriguing objects like black holes. And one such survey has recently identified the most distant active supermassive black hole seen so far.

While a typical black hole might have a mass up to around 10 times that of the sun, supermassive black holes are much more massive, with a mass that can be millions or even billions of times the mass of the sun. These monsters are found at the heart of galaxies and are thought to play important roles in the formation and merging of galaxies.

Read more