Skip to main content

See the very first image (and first selfie!) from James Webb

The James Webb Space Telescope is in its final orbit and has its science instruments turned on, but it’ll still be several months before the world’s most powerful space telescope is ready to collect science data. That’s because the telescope not only needs to reach a stable temperature but also because it needs to go through the careful and complex process of aligning its mirrors. But that doesn’t mean there’s nothing to see from this brand new telescope — in fact, NASA has just released both the first image captured by the telescope and even a selfie snapped by one of the telescope’s cameras.

The first image might not look like much, but it’s an indication that Webb’s NIRCam instrument is working to collect light from its target — a particularly bright star called HD 84406. The 18 points of light in the image represent each of the 18 segments of the telescope’s primary mirror, which are gradually being brought into alignment by making nanometer adjustments. “The entire Webb team is ecstatic at how well the first steps of taking images and aligning the telescope are proceeding,” said Marcia Rieke, principal investigator for the NIRCam instrument in a statement. “We were so happy to see that light makes its way into NIRCam.”

An image mosaic created by pointing the telescope at a bright, isolated star in the constellation Ursa Major known as HD 84406.
This image mosaic was created by pointing the telescope at a bright, isolated star in the constellation Ursa Major known as HD 84406. This star was chosen specifically because it is easily identifiable and not crowded by other stars of similar brightness, which helps to reduce background confusion. NASA

The image is a mosaic, stitched together from a huge 54 gigabytes of raw data captured over a 25-hour period. This is just a portion of the full mosaic, showing the same star imaged 18 times. This is invaluable data for the team as they work on aligning the mirrors to bring the telescope into focus.

In addition, the NIRCam instrument used a special lens to snap an image of the telescope itself, showing the distinctive hexagon-shaped mirror segments in the telescope’s first selfie. You can see one of the segments glowing brightly as that segment was pointed toward a star, while the other segments are currently at different alignments.

Selfie of a James Webb telescope mirror created using a specialized pupil imaging lens inside of the NIRCam instrument.
This “selfie” was created using a specialized pupil imaging lens inside of the NIRCam instrument that was designed to take images of the primary mirror segments instead of images of space. This configuration is not used during scientific operations and is used strictly for engineering and alignment purposes. In this case, the bright segment was pointed at a bright star, while the others aren’t currently in the same alignment. This image gave an early indication of the primary mirror alignment to the instrument. NASA

Over the next few months, the images captured by Webb will become sharper and show more details as the mirrors are aligned and the telescope’s other three instruments reach their stable temperatures and start capturing data as well. For now, the images show that the telescope is healthy and operating for the first time. “Launching Webb to space was, of course, an exciting event, but for scientists and optical engineers, this is a pinnacle moment, when light from a star is successfully making its way through the system down onto a detector,” said Michael McElwain, Webb observatory project scientist at NASA’s Goddard Space Flight Center.

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Zoom into stunning James Webb image to see a galaxy formed 13.4 billion years ago
A section of a James Webb image showing a small part of the Extended Groth Strip, located between the Ursa Major and Boötes constellations.

One of the amazing things about the James Webb Space Telescope is the level of detail it is able to capture of very distant objects -- but it can be hard to picture what that means when the distances being considered are so large. Now, a new visualization gives a feel of just how detailed the data from the telescope is, by showing how it's possible to start with a stunning view of thousands of galaxies and zoom closer and closer in until you reach just one.

CEERS: Flight to Maisie's Galaxy

Read more
One galaxy, two views: see a comparison of images from Hubble and Webb
The peculiar galaxy NGC 3256 takes centre stage in this image from the NASA/ESA Hubble Space Telescope. This distorted galaxy is the wreckage of a head-on collision between two spiral galaxies which likely occurred 500 million years ago, and it is studded with clumps of young stars which were formed as gas and dust from the two galaxies collided.

It might not seem obvious why astronomers need multiple different powerful space telescopes. Surely a more powerful telescope is better than a less powerful one? So why are there multiple different telescopes in orbit, either around Earth or around the sun?

The answer is to do with two main factors. One is the telescope's field of view, meaning how much of the sky it looks at. Some telescopes are useful for looking at large areas of the sky in less detail, working as survey telescopes to identify objects for further research or to look at the universe on a large scale -- like the recently launched Euclid mission. While others, like the Hubble Space Telescope, look at small areas of the sky in great detail, which is useful for studying particular objects.

Read more
James Webb spots the most distant active supermassive black hole ever discovered
Crop of Webb's CEERS Survey image.

As well as observing specific objects like distant galaxies and planets here in our solar system, the James Webb Space Telescope is also being used to perform wide-scale surveys of parts of the sky. These surveys observe large chunks of the sky to identify important targets like very distant, very early galaxies, as well as observe intriguing objects like black holes. And one such survey has recently identified the most distant active supermassive black hole seen so far.

While a typical black hole might have a mass up to around 10 times that of the sun, supermassive black holes are much more massive, with a mass that can be millions or even billions of times the mass of the sun. These monsters are found at the heart of galaxies and are thought to play important roles in the formation and merging of galaxies.

Read more