Skip to main content

James Webb captures the edge of the beautiful Horsehead Nebula

A new image from the James Webb Space Telescope shows the sharpest infrared view to date of a portion of the famous Horsehead Nebula, an iconic cloud of dust and gas that’s also known as Barnard 33 and is located around 1,300 light-years away.

The Horsehead Nebula is part of a large cloud of molecular gas called Orion B, which is a busy star-forming region where many young stars are being born. This nebula  formed from a collapsing cloud of material that is illuminated by a bright, hot star located nearby. The image shows the very top part of the nebula, catching the section that forms the “horse’s mane.”

The NASA/ESA/CSA James Webb Space Telescope has captured the sharpest infrared images to date of one of the most distinctive objects in our skies, the Horsehead Nebula. These observations show a part of the iconic nebula in a whole new light, capturing its complexity with unprecedented spatial resolution.Webb’s new images show part of the sky in the constellation Orion (The Hunter), in the western side of the Orion B molecular cloud. Rising from turbulent waves of dust and gas is the Horsehead Nebula, otherwise known as Barnard 33, which resides roughly 1300 light-years away.
The NASA/European Space Agency/Canadian Space Agency’s James Webb Space Telescope has captured the sharpest infrared images to date of one of the most distinctive objects in our skies, the Horsehead Nebula. These observations show a part of the iconic nebula in a whole new light, capturing its complexity with unprecedented spatial resolution. ESA/Webb, NASA, CSA, K. Misselt (University of Arizona) and A. Abergel (IAS/University Paris-Saclay, CNRS)

This image was taken using Webb’s NIRCam instrument, which looks in the near-infrared wavelength (just beyond the range of what is visible to the human eye). It shows many background galaxies and bright stars, as well as the cloud of material at the bottom.

Recommended Videos

Another view of the same region was taken using Webb’s MIRI instrument, which operates in the mid-infrared and highlights more structures within the nebula, but fewer background objects. By combining views from both instruments, scientists can build up a more complete picture of the region.

This image was captured with Webb’s MIRI (Mid-InfraRed Instrument).
This image was captured with Webb’s MIRI (Mid-InfraRed Instrument). ESA/Webb, NASA, CSA, K. Misselt (University of Arizona) and A. Abergel (IAS/University Paris-Saclay, CNRS)

To compare the different views seen by the two instruments, there is a slider tool on the Webb website that lets you flick between each image.

Researchers are particularly interested in the Horsehead Nebula because it is a pocket of neutral material in the midst of lots of sources of ultraviolet light. The gases in this area, called a photodissociation region, or PDR, are warmed by radiation, but mostly not ionized, unlike the large amounts of gas around bright young stars that quickly become ionized due to the radiation given off by the stars. PDRs are thought to form in areas where gas is present at just the right density to allow ultraviolet radiation to penetrate and warm the gas, but not to ionize it.

PDRs are typically found at the boundaries of large clouds of molecular gas, and while astronomers used to think that these regions were homogeneous, they now know that they can have complex structures of their own — some of which can be seen in these images.  The researchers working with Webb will next use its spectroscopy instruments to learn more about the material that makes up the nebula.

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
James Webb takes rare direct image of a nearby super-Jupiter
Artist’s impression of a cold gas giant orbiting a red dwarf. Only a point of light is visible on the JWST/MIRI images. Nevertheless, the initial analysis suggests the presence of a gaseous planet that may have properties similar to Jupiter.

Even with huge ground-based observatories and the latest technology in space-based telescopes, it's still relatively rare for astronomers to take an image of an exoplanet. Planets outside our solar system are so far away and so small and dim compared to the stars they orbit that it's extremely difficult to study them directly. That's why most observations of exoplanets are made by studying their host stars. Now, though, the James Webb Space Telescope has directly imaged a gas giant -- and it's one of the coldest exoplanets observed so far.

The planet, named Epsilon Indi Ab, is located 12 light-years away and has an estimated temperature of just 35 degrees Fahrenheit (2 degrees Celsius). The fact it is so cool compared to most exoplanets meant that Webb's sensitive instruments were needed to study it.

Read more
One half of this wild exoplanet reaches temperatures of 1,450 degrees Fahrenheit
webb wasp 39b dayside nightside stsci 01j2f12rm1s3n39yj938nhsf93 png

This artist’s concept shows what the exoplanet WASP-39 b could look like based on indirect transit observations from JWST and other space- and ground-based telescopes. Data collected by its NIRSpec (Near-Infrared Spectrograph) show variations between the morning and evening atmosphere of the planet. NASA, ESA, CSA, Ralf Crawford (STScI)

One of the ground-breaking abilities of the James Webb Space Telescope is that researchers can use it to not only detect distant planets but also to peer into their atmosphere. Now, new research using Webb has uncovered differing conditions between morning and evening on a distant exoplanet, the first time such differences have been observed on a planet outside our solar system.

Read more
Webb captures a Penguin and an Egg for its two-year anniversary
This “penguin party” is loud! The distorted spiral galaxy at center, the Penguin, and the compact elliptical galaxy at left, the Egg, are locked in an active embrace. A new near- and mid-infrared image from the James Webb Space Telescope, taken to mark its second year of science, shows that their interaction is marked by a faint upside-down U-shaped blue glow.

This “penguin party” is loud! The distorted spiral galaxy at center, called the Penguin, and the compact elliptical galaxy at left, called the Egg, are locked in an active embrace. A new near- and mid-infrared image from the James Webb Space Telescope, taken to mark its second year of science, shows that their interaction is marked by a faint upside-down U-shaped blue glow. NASA, ESA, CSA, STScI

Today, July 12, marks two years since the first images from the James Webb Space Telescope were unveiled. In that time, Webb has discovered the most distant galaxies known, uncovered surprises about the early universe, peered into the atmospheres of distant planets, and produced a plethora of beautiful images of space.

Read more