Skip to main content

Here are the cosmic targets for James Webb’s Telescope’s first images

This week will see the exciting release of the first science images from the James Webb Space Telescope. The telescope, a combined project from NASA, the European Space Agency (ESA), and the Canadian Space Agency (CSA), was launched in December last year and since then has arrived at its orbit around the sun, deployed its hardware, and aligned its mirrors and instruments. Now, NASA is gearing up for the release of the first images from the telescope, set for July 12, and has announced which objects the images will show.

The first object is the Carina Nebula, a large cloud of dust and gas where an enormous star exploded in 1843. The nebula is famed for its beauty as well as for hosting star WR 25, the brightest star in our galaxy. It is large by nebulae standards and is located 7,600 light-years away in the constellation Carina, visible in the southern hemisphere.

Eta Carinae as imaged by the Hubble Space Telescope’s Wide Field Camera 3 instrument in ultraviolet. The James Webb Space Telescope will image the same nebula in the infrared. NASA, ESA, N. Smith (University of Arizona, Tucson), and J. Morse (BoldlyGo Institute, New York)

The second object is a giant exoplanet called WASP-96b. Located 1,150 light-years away, it is around half the mass of Jupiter and it orbits very close to its star, with a year there lasting just 3.4 days. The data on this planet will include a spectrum, which can be used to tell what an object is composed of. It will likely include data about the exoplanet’s atmosphere, which is one of Webb’s new capabilities.

Recommended Videos

The third object is another nebula, the Southern Ring Nebula, which is bright and a distinctive round shape, made up of gas around a star coming to the end of its life.

The fourth and fifth objects are on a larger scale, including a galaxy group called Stephan’s Quintet located 290 million light-years away which has four of its five galaxies in very close proximity, and a deep field image called SMACS 0723 in which gravitational lensing gives a deep view of extremely distant and faint galaxies.

These images are just a taster of the work that James Webb will do in its first year, and show the variety of types of objects that it can study. The images are scheduled to be released on Tuesday, July 12, beginning at 10:30 a.m. ET (7:30 a.m. PT), and you can watch the release via a live broadcast on NASA TV.

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Zoom into stunning James Webb image to see a galaxy formed 13.4 billion years ago
A section of a James Webb image showing a small part of the Extended Groth Strip, located between the Ursa Major and Boötes constellations.

One of the amazing things about the James Webb Space Telescope is the level of detail it is able to capture of very distant objects -- but it can be hard to picture what that means when the distances being considered are so large. Now, a new visualization gives a feel of just how detailed the data from the telescope is, by showing how it's possible to start with a stunning view of thousands of galaxies and zoom closer and closer in until you reach just one.

CEERS: Flight to Maisie's Galaxy

Read more
One galaxy, two views: see a comparison of images from Hubble and Webb
The peculiar galaxy NGC 3256 takes centre stage in this image from the NASA/ESA Hubble Space Telescope. This distorted galaxy is the wreckage of a head-on collision between two spiral galaxies which likely occurred 500 million years ago, and it is studded with clumps of young stars which were formed as gas and dust from the two galaxies collided.

It might not seem obvious why astronomers need multiple different powerful space telescopes. Surely a more powerful telescope is better than a less powerful one? So why are there multiple different telescopes in orbit, either around Earth or around the sun?

The answer is to do with two main factors. One is the telescope's field of view, meaning how much of the sky it looks at. Some telescopes are useful for looking at large areas of the sky in less detail, working as survey telescopes to identify objects for further research or to look at the universe on a large scale -- like the recently launched Euclid mission. While others, like the Hubble Space Telescope, look at small areas of the sky in great detail, which is useful for studying particular objects.

Read more
James Webb spots the most distant active supermassive black hole ever discovered
Crop of Webb's CEERS Survey image.

As well as observing specific objects like distant galaxies and planets here in our solar system, the James Webb Space Telescope is also being used to perform wide-scale surveys of parts of the sky. These surveys observe large chunks of the sky to identify important targets like very distant, very early galaxies, as well as observe intriguing objects like black holes. And one such survey has recently identified the most distant active supermassive black hole seen so far.

While a typical black hole might have a mass up to around 10 times that of the sun, supermassive black holes are much more massive, with a mass that can be millions or even billions of times the mass of the sun. These monsters are found at the heart of galaxies and are thought to play important roles in the formation and merging of galaxies.

Read more