Skip to main content

James Webb’s sunshield extended to its full 47-foot width

Following a successful launch on Christmas day, the James Webb Space Telescope is currently heading through space, having traveled almost 500,000 miles from Earth. It is just over halfway to its eventual destination: The L2 orbit, called a Lagrange point, where it will move around the sun in a complex path. As James Webb travels it is slowly unfolding its various hardware which had to be folded up origami-style to fit into the Ariane 5 rocket which launched it.

The telescope is currently in the process of deploying its tennis court-sized sunshield — a complex operation of many steps which began earlier this week and is expected to take four to five days. This started with the deployment of structures called Pallet Structures, which hold the sunshield itself plus components like cables and pulleys. With the forward and aft pallet structures in place, the next step was deploying the Deployable Tower Assembly, a structure that creates space between the spacecraft and the telescope to make space for the sunshield. This deployment took place on Wednesday, December 29.

With that done, over Thursday and Friday this week the team deployment the aft moment flap to help maintain the telescope’s orientation once it is in orbit, and released the sunshield covers which protected the thin sunshield during launch.

The latest update from NASA is that James Webb has extended its two sunshield mid-booms. These “arms” extend to the left and right of the telescope, pulling the thin membrane of the sunshield with them until it spanned the full 47 feet of its width. Their deployment means that all of the 107 release devices for the various parts of the sunshield deployment have now been released.

“The mid-booms are the sunshield’s workhorse and do the heavy lifting to unfold and pull the membranes into that now-iconic shape,” said Keith Parrish, Webb observatory manager at NASA’s Goddard Space Flight Center, in a blog post.

The deployment of the mid-booms took a little longer than expected as the team paused to assess a possible issue with the rolling up of the sunshield cover. The switches on the cover seemed not to have activated, but other sensors showed that the cover had indeed rolled up correctly. They decided to go ahead and the deployment was successful.

“Today is an example of why we continue to say that we don’t think our deployment schedule might change, but that we expect it to change,” Parrish said. “The team did what we had rehearsed for this kind of situation — stop, assess, and move forward methodically with a plan. We still have a long way to go with this whole deployment process.”

The next step is for the sunshield to be tensioned, in which each of its five layers will be stretched into place, which is expected to happen over the next few days.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
One galaxy, two views: see a comparison of images from Hubble and Webb
The peculiar galaxy NGC 3256 takes centre stage in this image from the NASA/ESA Hubble Space Telescope. This distorted galaxy is the wreckage of a head-on collision between two spiral galaxies which likely occurred 500 million years ago, and it is studded with clumps of young stars which were formed as gas and dust from the two galaxies collided.

It might not seem obvious why astronomers need multiple different powerful space telescopes. Surely a more powerful telescope is better than a less powerful one? So why are there multiple different telescopes in orbit, either around Earth or around the sun?

The answer is to do with two main factors. One is the telescope's field of view, meaning how much of the sky it looks at. Some telescopes are useful for looking at large areas of the sky in less detail, working as survey telescopes to identify objects for further research or to look at the universe on a large scale -- like the recently launched Euclid mission. While others, like the Hubble Space Telescope, look at small areas of the sky in great detail, which is useful for studying particular objects.

Read more
James Webb spots the most distant active supermassive black hole ever discovered
Crop of Webb's CEERS Survey image.

As well as observing specific objects like distant galaxies and planets here in our solar system, the James Webb Space Telescope is also being used to perform wide-scale surveys of parts of the sky. These surveys observe large chunks of the sky to identify important targets like very distant, very early galaxies, as well as observe intriguing objects like black holes. And one such survey has recently identified the most distant active supermassive black hole seen so far.

While a typical black hole might have a mass up to around 10 times that of the sun, supermassive black holes are much more massive, with a mass that can be millions or even billions of times the mass of the sun. These monsters are found at the heart of galaxies and are thought to play important roles in the formation and merging of galaxies.

Read more
Saturn as you’ve never seen it before, captured by Webb telescope
Saturn captured by the James Webb Space Telescope

NASA has shared a gorgeous image of Saturn captured recently by the James Webb Space Telescope (JWST).

Webb’s first near-infrared observations of the second largest planet in our solar system also show several of Saturn’s moons: Dione, Enceladus, and Tethys.

Read more