Skip to main content

James Webb’s MIRI instrument has both a heater and a cooler

The long process of getting the James Webb Space Telescope ready for science operations continues, with the ongoing alignment of three of its instruments.

Webb recently reached the major milestone of aligning its mirrors with its NIRCam instrument, in a successful step that promises great results to come. “Webb’s alignment at the NIRCam field showed some spectacular diffraction-limited images, producing a tantalizing glimpse of the capabilities this observatory will carry for its science program,” wrote two Webb researchers, Michael McElwain, Webb observatory project scientist, and Charles Bowers, Webb deputy observatory project scientist, both at NASA Goddard, in a recent blog post. “This was a major milestone because it required nearly all of the observatory systems to be functioning as designed. It all worked as well as we dared to hope, and it was certainly a moment to celebrate.”

Recommended Videos

Now, the Webb team is working on aligning two more of the instruments — the Near-Infrared Slitless Spectrograph (NIRISS) and Near-Infrared Spectrometer (NIRSpec) — as well as the guider, called the Fine Guidance Sensor (FGS). This process is expected to take around six weeks and will ensure that all of the instruments can work together. Along with NIRCam, these comprise Webb’s near-infrared instruments.

While the three near-infrared instruments are passively cooled — meaning that heat is dispersed from the telescope and into space using design elements like heat sinks which require no power — the fourth instrument, MIRI, works in the mid-infrared wavelength and requires active cooling. Because MIRI uses a different type of detector than the other instruments, and these detectors need to be at an extremely low temperature of less than 7 kelvin to work properly, the instrument needs to be fitted with a cryocooler. This refrigeration system uses helium gas and includes pumps that require power but must produce very little vibration to avoid interfering with instrument readings.

In addition to this cooling system, MIRI is also fitted with heaters so that the cooldown process can be carefully managed to prevent ice from forming on the components. The heaters will shortly be turned off, allowing the cooling system to bring the instrument down to its operating temperature.

With the cooling of MIRI underway, it will take a few weeks until the final instrument gets cool enough to be ready for alignment. Then, with all four of the instruments aligned, the Webb team can move onto the next phase of commissioning — optical stability tests and instrument performance measurement — to get the telescope ready for science operations this summer.

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
One galaxy, two views: see a comparison of images from Hubble and Webb
The peculiar galaxy NGC 3256 takes centre stage in this image from the NASA/ESA Hubble Space Telescope. This distorted galaxy is the wreckage of a head-on collision between two spiral galaxies which likely occurred 500 million years ago, and it is studded with clumps of young stars which were formed as gas and dust from the two galaxies collided.

It might not seem obvious why astronomers need multiple different powerful space telescopes. Surely a more powerful telescope is better than a less powerful one? So why are there multiple different telescopes in orbit, either around Earth or around the sun?

The answer is to do with two main factors. One is the telescope's field of view, meaning how much of the sky it looks at. Some telescopes are useful for looking at large areas of the sky in less detail, working as survey telescopes to identify objects for further research or to look at the universe on a large scale -- like the recently launched Euclid mission. While others, like the Hubble Space Telescope, look at small areas of the sky in great detail, which is useful for studying particular objects.

Read more
James Webb spots the most distant active supermassive black hole ever discovered
Crop of Webb's CEERS Survey image.

As well as observing specific objects like distant galaxies and planets here in our solar system, the James Webb Space Telescope is also being used to perform wide-scale surveys of parts of the sky. These surveys observe large chunks of the sky to identify important targets like very distant, very early galaxies, as well as observe intriguing objects like black holes. And one such survey has recently identified the most distant active supermassive black hole seen so far.

While a typical black hole might have a mass up to around 10 times that of the sun, supermassive black holes are much more massive, with a mass that can be millions or even billions of times the mass of the sun. These monsters are found at the heart of galaxies and are thought to play important roles in the formation and merging of galaxies.

Read more
Saturn as you’ve never seen it before, captured by Webb telescope
Saturn captured by the James Webb Space Telescope

NASA has shared a gorgeous image of Saturn captured recently by the James Webb Space Telescope (JWST).

Webb’s first near-infrared observations of the second largest planet in our solar system also show several of Saturn’s moons: Dione, Enceladus, and Tethys.

Read more