Skip to main content

James Webb captures a gorgeous stellar nursery in nearby dwarf galaxy

A gorgeous new image from the James Webb Space Telescope shows a stunning sight from one of our galactic neighbors. The image shows a region of star formation called NGC 346, where new stars are being born. It’s located in the Small Magellanic Cloud, a dwarf galaxy that is a satellite galaxy to the Milky Way.

The star-forming region of the Small Magellanic Cloud (SMC) was previously imaged by the Hubble Space Telescope in 2005, but this new image gives a different view as it is taken in the infrared wavelength by Webb instead of the optical light wavelength used by Hubble.

This new infrared image of NGC 346 from NASA’s James Webb Space Telescope’s Mid-Infrared Instrument (MIRI) traces emission from cool gas and dust. In this image blue represents silicates and sooty chemical molecules known as polycyclic aromatic hydrocarbons, or PAHs. More diffuse red emission shines from warm dust heated by the brightest and most massive stars in the heart of the region. Bright patches and filaments mark areas with abundant numbers of protostars. This image includes 7.7-micron light shown in blue, 10 microns in cyan, 11.3 microns in green, 15 microns in yellow, and 21 microns in red (770W, 1000W, 1130W, 1500W, and 2100W filters, respectively).
This new infrared image of NGC 346 taken by NASA’s James Webb Space Telescope’s Mid-Infrared Instrument (MIRI) traces emissions from cool gas and dust. In this image, blue represents silicates and sooty chemical molecules known as polycyclic aromatic hydrocarbons, or PAHs. More diffuse red emission shines from warm dust heated by the brightest and most massive stars in the heart of the region. Bright patches and filaments mark areas with abundant numbers of protostars. Image: NASA, ESA, CSA, STScI, Nolan Habel (NASA-JPL); Image Processing: Patrick Kavanagh (Maynooth University)

This image was taken using the Mid-Infrared Instrument (MIRI), Webb’s instrument that operates in the mid-infrared range. Unlike the other three instruments, which operate in the near-infrared, MIRI is particularly suited to highlighting dust and the intricate structures that it forms. The colors here represent different processes, as red shows the warm dust that is heated by bright nearby stars, while the blue regions represent areas dominated by molecules called polycyclic aromatic hydrocarbons.

Recommended Videos

You can see the contrast in how objects look at different wavelengths by comparing this image taken with MIRI to a previous James Webb image of the same region taken with its NIRCam instrument.

NGC 346, shown here in this image from NASA’s James Webb Space Telescope Near-Infrared Camera (NIRCam), is a dynamic star cluster that lies within a nebula 200,000 light years away. Webb reveals the presence of many more building blocks than previously expected, not only for stars, but also planets, in the form of clouds packed with dust and hydrogen. 
NGC 346, shown here in this image from NASA’s James Webb Space Telescope Near-Infrared Camera (NIRCam), is a dynamic star cluster that lies within a nebula 200,000 light-years away. SCIENCE: NASA, ESA, CSA, Olivia C. Jones (UK ATC), Guido De Marchi (ESTEC), Margaret Meixner (USRA) IMAGE PROCESSING: Alyssa Pagan (STScI), Nolan Habel (USRA), Laura Lenkić (USRA), Laurie E. U. Chu (NASA Ames)

This image focuses on the near-infrared, which is ideal for highlighting the presence of stars and the arcs of gas in the region, which is primarily hydrogen.

“By combining Webb data in both the near-infrared and mid-infrared, astronomers are able to take a fuller census of the stars and protostars within this dynamic region,” Webb scientists explain. “The results have implications for our understanding of galaxies that existed billions of years ago, during an era in the universe known as ‘cosmic noon,’ when star formation was at its peak and heavy element concentrations were lower, as seen in the SMC.”

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
James Webb Telescope captures gorgeous galaxy with a hungry monster at its heart
Featured in this new image from the NASA/ESA/CSA James Webb Space Telescope is Messier 106, also known as NGC 4258. This is a nearby spiral galaxy that resides roughly 23 million light-years away in the constellation Canes Venatici, practically a neighbour by cosmic standards. Messier 106 is one of the brightest and nearest spiral galaxies to our own and two supernovae have been observed in this galaxy in 1981 and 2014.

A new image from the James Webb Space Telescope shows off a nearby galaxy called Messier 106 -- a spiral galaxy that is particularly bright. At just 23 million light-years away (that's relatively close by galactic standards), this galaxy is of particular interest to astronomers due to its bustling central region, called an active galactic nucleus.

The high level of activity in this central region is thought to be due to the monster that lurks at the galaxy's heart. Like most galaxies including our own, Messier 106 has an enormous black hole called a supermassive black hole at its center. However, the supermassive black hole in Messier 106 is particularly active, gobbling up material like dust and gas from the surrounding area. In fact, this black hole eats so much matter that as it spins, it warps the disk of gas around it, which creates streamers of gas flying out from this central region.

Read more
Hubble images a pair of tiny dwarf galaxies
hubble dwarf galaxy pair ic3430 potw2431a 1

A new image from the Hubble Space Telescope shows a small dwarf galaxy called IC 3430 that's located 45 million light-years away. This galaxy is classified as both a dwarf galaxy, because of its small size, and an elliptical galaxy, because of its form.

Elliptical galaxies are smooth and featureless, appearing blob-like and diffuse, unlike spiral galaxies, like our Milky Way, which have a distinct structure of a central hub and stretching spiral arms.

Read more
James Webb takes rare direct image of a nearby super-Jupiter
Artist’s impression of a cold gas giant orbiting a red dwarf. Only a point of light is visible on the JWST/MIRI images. Nevertheless, the initial analysis suggests the presence of a gaseous planet that may have properties similar to Jupiter.

Even with huge ground-based observatories and the latest technology in space-based telescopes, it's still relatively rare for astronomers to take an image of an exoplanet. Planets outside our solar system are so far away and so small and dim compared to the stars they orbit that it's extremely difficult to study them directly. That's why most observations of exoplanets are made by studying their host stars. Now, though, the James Webb Space Telescope has directly imaged a gas giant -- and it's one of the coldest exoplanets observed so far.

The planet, named Epsilon Indi Ab, is located 12 light-years away and has an estimated temperature of just 35 degrees Fahrenheit (2 degrees Celsius). The fact it is so cool compared to most exoplanets meant that Webb's sensitive instruments were needed to study it.

Read more