Skip to main content

James Webb survey image shows a field of shining galaxies

As well as providing new information about objects like exoplanets and giving new views of some famous space scenes, the James Webb Space Telescope is also being used to observe large patches of the sky in wide-scale surveys. Researchers from one such Webb survey, called the Prime Extragalactic Areas for Reionization and Lensing Science or PEARLS, recently released their first results showing an area of the sky called the North Ecliptic Pole.

This image shows around 2% of the sky, as captured by both Webb’s Near-Infrared Camera or NIRCam and the Hubble Space Telescope’s Advanced Camera for Surveys. This is just a part of the PEARLS survey, but shows thousands of galaxies including some extremely distant ones. You can see a zoomable version of the image on the Webb website.

A swath of sky measuring 2% of the area covered by the full moon imaged with Webb’s Near-Infrared Camera.
A swath of sky measuring 2% of the area covered by the full moon was imaged with Webb’s Near-Infrared Camera (NIRCam) in eight filters, and with Hubble’s Advanced Camera for Surveys (ACS) and Wide-Field Camera 3 (WFC3) in three filters that together span the 0.25 to 5-micron wavelength range. This image represents a portion of the full PEARLS field, which will be about four times larger. NASA, ESA, CSA, A. Pagan (STScI) & R. Jansen (ASU). SCIENCE: R. Jansen, J. Summers, R. O'Brien, and R. Windhorst (Arizona State University); A. Robotham (ICRAR/UWA); A. Koekemoer (STScI); C. Willmer (UofA); and the PEARLS team.

“For over two decades, I’ve worked with a large international team of scientists to prepare our Webb science program,” said lead author of the research, Rogier Windhorst of Arizona State University, in a statement. “Webb’s images are truly phenomenal, really beyond my wildest dreams. They allow us to measure the number density of galaxies shining to very faint infrared limits and the total amount of light they produce. This light is much dimmer than the very dark infrared sky measured between those galaxies.”

Some of the interesting features being studied by the PEARLS survey include the accretion disks which form around supermassive black holes in the center of galaxies, a pair of overlapping galaxies called the VV 191 galaxy system, and some extremely old galaxies with very high redshift, the light of which has been traveling for almost 13.5 billion years.

“I was blown away by the first PEARLS images,” said coauthor Rolf Jansen. “Little did I know, when I selected this field near the North Ecliptic Pole, that it would yield such a treasure trove of distant galaxies, and that we would get direct clues about the processes by which galaxies assemble and grow. I can see streams, tails, shells, and halos of stars in their outskirts, the leftovers of their building blocks.”

The research is published in The Astronomical Journal.

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
See the stunning image James Webb took to celebrate its first birthday
The first anniversary image from the NASA/ESA/CSA James Webb Space Telescope displays star birth like it’s never been seen before, full of detailed, impressionistic texture. The subject is the Rho Ophiuchi cloud complex, the closest star-forming region to Earth. It is a relatively small, quiet stellar nursery, but you’d never know it from Webb’s chaotic close-up. Jets bursting from young stars crisscross the image, impacting the surrounding interstellar gas and lighting up molecular hydrogen, shown in red. Some stars display the telltale shadow of a circumstellar disc, the makings of future planetary systems.

Today marks the one-year anniversary of the first images shared from the James Webb Space Telescope, and to celebrate this milestone NASA has shared yet another gorgeous image of space captured by Webb.

The new image shows a star system called Rho Ophiuchi; a busy region where new stars are being born amide swirls of dust and gas. Located just 390 light-years away, Webb was able to capture the region in stunning detail using its NIRCam instrument.

Read more
Zoom into stunning James Webb image to see a galaxy formed 13.4 billion years ago
A section of a James Webb image showing a small part of the Extended Groth Strip, located between the Ursa Major and Boötes constellations.

One of the amazing things about the James Webb Space Telescope is the level of detail it is able to capture of very distant objects -- but it can be hard to picture what that means when the distances being considered are so large. Now, a new visualization gives a feel of just how detailed the data from the telescope is, by showing how it's possible to start with a stunning view of thousands of galaxies and zoom closer and closer in until you reach just one.

CEERS: Flight to Maisie's Galaxy

Read more
One galaxy, two views: see a comparison of images from Hubble and Webb
The peculiar galaxy NGC 3256 takes centre stage in this image from the NASA/ESA Hubble Space Telescope. This distorted galaxy is the wreckage of a head-on collision between two spiral galaxies which likely occurred 500 million years ago, and it is studded with clumps of young stars which were formed as gas and dust from the two galaxies collided.

It might not seem obvious why astronomers need multiple different powerful space telescopes. Surely a more powerful telescope is better than a less powerful one? So why are there multiple different telescopes in orbit, either around Earth or around the sun?

The answer is to do with two main factors. One is the telescope's field of view, meaning how much of the sky it looks at. Some telescopes are useful for looking at large areas of the sky in less detail, working as survey telescopes to identify objects for further research or to look at the universe on a large scale -- like the recently launched Euclid mission. While others, like the Hubble Space Telescope, look at small areas of the sky in great detail, which is useful for studying particular objects.

Read more