Skip to main content

See a new star being born in stunning James Webb image

The James Webb Space Telescope has captured a stunning image of the birth of a new star. As dust and gas clump together and eventually collapses under the force of gravity, it becomes a protostar: the core of a new star, rotating and forming a magnetic field, throwing off material in two dramatic jets of gas.

This process is on display in this image of the cloud L1527, taken using Webb’s NIRCam instrument. Looking in the infrared, this camera can capture the clouds of material given off by the protostar which would be invisible to the human eye.

The protostar L1527, shown in this image from the NASA/ESA/CSA James Webb Space Telescope.
The protostar L1527, shown in this image from the NASA/ESA/CSA James Webb Space Telescope, is embedded within a cloud of material that is feeding its growth. Material ejected from the star has cleared out cavities above and below it, whose boundaries glow orange and blue in this infrared view. The upper central region displays bubble-like shapes due to stellar ‘burps,’ or sporadic ejections. Webb also detects filaments made of molecular hydrogen that has been shocked by past stellar ejections. Intriguingly, the edges of the cavities at the upper left and lower right appear straight, while the boundaries at the upper right and lower left are curved. The region at the lower right appears blue, as there’s less dust between it and Webb than the orange regions above it. NASA, ESA, CSA, and STScI, J. DePasquale (STScI)

In the image, the protostar itself can’t be seen but is located right in the center of the hourglass shape. That shape is formed from clouds of dust and gas which are shaped by the jets given off by the protostar, with thinner areas of dust appearing blue and thicker areas appearing orange. In addition to the dust, there are also filaments of hydrogen gas visible, shaped by ejections from the protostar.

Researchers estimate that this protostar is around 100,000 years old, making it a baby by stellar standards. For comparison, our sun is around 4.6 billion years old and is expected to live to around 9 to 10 billion years of age. The protostar is also smaller than our sun, at between 20 to 40% of its mass, and most importantly it is not yet producing heat through fusion.

The protostar will continue gathering dust and gas and increasing in mass. As this material falls into the protostar due to gravity, it heats up because of friction. To start fusing hydrogen, the protostar needs to reach a core temperature of around 10 million degrees Kelvin. At this temperature, the gases become plasma, and hydrogen atoms start fusing together to form helium, releasing energy in the form of heat and light. This is the point at which a protostar becomes a main sequence star.

Some of the material left around the protostar could even become a planet one day. “Ultimately, this view of L1527 provides a window onto what our Sun and Solar System looked like in their infancy,” Webb scientists write.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
One galaxy, two views: see a comparison of images from Hubble and Webb
The peculiar galaxy NGC 3256 takes centre stage in this image from the NASA/ESA Hubble Space Telescope. This distorted galaxy is the wreckage of a head-on collision between two spiral galaxies which likely occurred 500 million years ago, and it is studded with clumps of young stars which were formed as gas and dust from the two galaxies collided.

It might not seem obvious why astronomers need multiple different powerful space telescopes. Surely a more powerful telescope is better than a less powerful one? So why are there multiple different telescopes in orbit, either around Earth or around the sun?

The answer is to do with two main factors. One is the telescope's field of view, meaning how much of the sky it looks at. Some telescopes are useful for looking at large areas of the sky in less detail, working as survey telescopes to identify objects for further research or to look at the universe on a large scale -- like the recently launched Euclid mission. While others, like the Hubble Space Telescope, look at small areas of the sky in great detail, which is useful for studying particular objects.

Read more
James Webb spots the most distant active supermassive black hole ever discovered
Crop of Webb's CEERS Survey image.

As well as observing specific objects like distant galaxies and planets here in our solar system, the James Webb Space Telescope is also being used to perform wide-scale surveys of parts of the sky. These surveys observe large chunks of the sky to identify important targets like very distant, very early galaxies, as well as observe intriguing objects like black holes. And one such survey has recently identified the most distant active supermassive black hole seen so far.

While a typical black hole might have a mass up to around 10 times that of the sun, supermassive black holes are much more massive, with a mass that can be millions or even billions of times the mass of the sun. These monsters are found at the heart of galaxies and are thought to play important roles in the formation and merging of galaxies.

Read more
Saturn as you’ve never seen it before, captured by Webb telescope
Saturn captured by the James Webb Space Telescope

NASA has shared a gorgeous image of Saturn captured recently by the James Webb Space Telescope (JWST).

Webb’s first near-infrared observations of the second largest planet in our solar system also show several of Saturn’s moons: Dione, Enceladus, and Tethys.

Read more