Skip to main content

James Webb telescope captures stunning view of a famous supernova remnant

One of the satellite galaxies of the Milky Way, the Large Magellanic Cloud, is famous as the host of the nearest supernova to Earth in recent history. Supernova SN 1987A occurred when a massive star ran out of fuel and collapsed at the end of its life, setting off an enormous explosion that threw out a shock wave so powerful it reshaped the dust and gas around it for millions of miles in every direction.

That supernova left behind a remnant, a ring-shaped structure created as the shock wave traveled outward over time. This glowing ring has been frequently observed since the supernova was first seen in 1987. Now, the James Webb Space Telescope has provided one of the most detailed views yet of this stunning structure that was created from a destructive explosion.

Webb’s NIRCam (Near-Infrared Camera) captured this detailed image of SN 1987A (Supernova 1987A). At the center, material ejected from the supernova forms a keyhole shape. Just to its left and right are faint crescents newly discovered by Webb. Beyond them an equatorial ring, formed from material ejected tens of thousands of years before the supernova explosion, contains bright hot spots. Exterior to that is diffuse emission and two faint outer rings. In this image blue represents light at 1.5 microns (F150W), cyan 1.64 and 2.0 microns (F164N, F200W), yellow 3.23 microns (F323N), orange 4.05 microns (F405N), and red 4.44 microns (F444W).
Webb’s NIRCam (Near-Infrared Camera) captured this detailed image of SN 1987A (Supernova 1987A). At the center, material ejected from the supernova forms a keyhole shape. Just to its left and right are faint crescents newly discovered by Webb. Beyond them an equatorial ring, formed from material ejected tens of thousands of years before the supernova explosion, contains bright hot spots. Science: NASA, ESA, CSA, Mikako Matsuura (Cardiff University), Richard Arendt (NASA-GSFC, UMBC), Claes Fransson (Stockholm University), Josefin Larsson (KTH); Image Processing: Alyssa Pagan (STScI)

This image of SN 1987A was taken using Webb’s NIRCam instrument, and it shows a central keyhole-shaped structure full of dust and gas that was thrown off by the dying star as it came to the end of its life. While Webb’s infrared instruments are useful for looking through dust to reveal structures beneath, in the very center of the remnantm the dust is so dense that even infrared light cannot penetrate it, hence the dark clump in the very center.

Recommended Videos

The rings of material around the center are seen in more detail too, like the bright dots, which are hotspots created by the shock wave from the supernova hitting previously cast-off rings of material.

Astronomers combined observations from three different observatories (Atacama Large Millimeter/submillimeter Array, red; Hubble, green; Chandra X-ray Observatory, blue) to produce this colorful, multiwavelength image of the intricate remains of Supernova 1987A.
Astronomers combined observations from three different observatories to produce this colorful, multiwavelength image of the intricate remains of Supernova 1987A. NASA, ESA, A. Angelich (NRAO, AUI, NSF); Hubble image: NASA, ESA, and R. Kirshner (Harvard-Smithsonian Center for Astrophysics and Gordon and Betty Moore Foundation) Chandra image: NASA/CXC/Penn State/K. Frank et al. ALMA image: ALMA (ESO/NAOJ/NRAO) and R. Indebetouw (NRAO/AUI/NSF)

As a famous supernova, SN 1987A has been previously observed many times before, including by space-based tools like the Hubble Space Telescope and the Chandra X-ray Observatory, as well as ground-based tools like the Atacama Large Millimeter/Submillimeter Array.

The image above shows a combination of data from these three observatories, which operate in the optical, X-ray, and radio wavelengths respectively. These observations show the same structures as the Webb image, but in less crisp detail — demonstrating how useful Webb’s instruments are for getting a fresh look at well-known objects.

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
James Webb is explaining the puzzle of some of the earliest galaxies
This image shows a small portion of the field observed by NASA’s James Webb Space Telescope’s NIRCam (Near-Infrared Camera) for the Cosmic Evolution Early Release Science (CEERS) survey. It is filled with galaxies. The light from some of them has traveled for over 13 billion years to reach the telescope.

From practically the moment it was turned on, the James Webb Space Telescope has been shaking cosmology. In some of its very earliest observations, the telescope was able to look back at some of the earliest galaxies ever observed, and it found something odd: These galaxies were much brighter than anyone had predicted. Even when the telescope's instruments were carefully calibrated over the few weeks after beginning operations, the discrepancy remained. It seemed like the early universe was a much busier, brighter place than expected, and no one knew why.

This wasn't a minor issue. The fact early galaxies appeared to be bigger or brighter than model predicted meant that something was off about the way we understood the early universe. The findings were even considered "universe breaking." Now, though, new research suggests that the universe isn't broken -- it's just that there were early black holes playing tricks.

Read more
Event Horizon Telescope can now take images of black holes that are 50% sharper
Illustration of the highest-resolution detections ever made from the surface of Earth

The Event Horizon Telescope project, the group that took the first-ever image of a black hole, has made another historic breakthrough, making the highest-ever resolution observations of space taken from the Earth's surface. The project uses facilities around the globe to turn the Earth itself into a giant observatory, which is capable of taking highly precise measurements of distant galaxies.

The latest observations made use of the Atacama Large Millimeter/submillimeter Array (ALMA), a large array of radio telescopes located in Chile, as well as other facilities in Spain, France, and Hawaii. To get higher-resolution images than previous observations, scientists weren't able to make the telescope bigger -- as it was already the size of the Earth -- so they observed at a higher frequency instead.

Read more
James Webb Telescope captures gorgeous galaxy with a hungry monster at its heart
Featured in this new image from the NASA/ESA/CSA James Webb Space Telescope is Messier 106, also known as NGC 4258. This is a nearby spiral galaxy that resides roughly 23 million light-years away in the constellation Canes Venatici, practically a neighbour by cosmic standards. Messier 106 is one of the brightest and nearest spiral galaxies to our own and two supernovae have been observed in this galaxy in 1981 and 2014.

A new image from the James Webb Space Telescope shows off a nearby galaxy called Messier 106 -- a spiral galaxy that is particularly bright. At just 23 million light-years away (that's relatively close by galactic standards), this galaxy is of particular interest to astronomers due to its bustling central region, called an active galactic nucleus.

The high level of activity in this central region is thought to be due to the monster that lurks at the galaxy's heart. Like most galaxies including our own, Messier 106 has an enormous black hole called a supermassive black hole at its center. However, the supermassive black hole in Messier 106 is particularly active, gobbling up material like dust and gas from the surrounding area. In fact, this black hole eats so much matter that as it spins, it warps the disk of gas around it, which creates streamers of gas flying out from this central region.

Read more