Skip to main content

Juice spacecraft snaps images of the Earth and moon as it passes by

This image of our own Moon was taken during Juice’s lunar-Earth flyby on 19 August 2024. The main aim of JANUS’s observations during the lunar-Earth flyby was to evaluate how well the instrument is performing, not to make scientific measurements.
This image of our own Moon was taken during Juice’s lunar-Earth flyby on 19 August 2024. The main aim of JANUS’s observations during the lunar-Earth flyby was to evaluate how well the instrument is performing, not to make scientific measurements. ESA/Juice/JANUS

The European Space Agency’s Juice spacecraft recently made a flyby of both Earth and the moon on its way to Jupiter. The purpose of the flyby was mainly to adjust the spacecraft’s speed and direction, to help send it on its long journey to investigate Jupiter and its icy moons. But as the spacecraft flew within a few thousand miles of the Earth’s surface, it was able to use its instruments to snap pictures of both the Earth and the moon.

The Juice spacecraft’s main camera is called Janus, which will take high-resolution images of Jupiter’s moons to identify surface features, as well as observing the clouds of Jupiter. The flyby gave the opportunity to test this instrument on both the moon, which has no atmosphere and is so comparable to the moons of Jupiter, and the Earthm which has a cloud layer that can serve as a stand-in for the thick atmosphere of Jupiter.

This image of planet Earth was taken during Juice’s lunar-Earth flyby. It was taken at dawn on 20 August 2024 and shows the island of Luzon, the largest and most populous island in the Philippines.
This image of planet Earth was taken during Juice’s lunar-Earth flyby. It was taken at dawn on 20 August 2024 and shows the island of Luzon, the largest and most populous island in the Philippines. ESA/Juice/JANUS

“After more than 12 years of work to propose, build and verify the instrument, this is the first opportunity to see first-hand data similar to those we will acquire in the Jupiter system starting in 2031,” said Pasquale Palumbo of the National Institute for Astrophysics in Rome and principal investigator of the Janus team, in a statement translated from Italian. “Even though the flyby was planned exclusively to facilitate the interplanetary journey to Jupiter, all the instruments on board the probe took advantage of the passage near the moon and Earth to acquire data, test operations and processing techniques with the advantage of already knowing what we were observing.”

This image of our own Moon was taken during Juice’s lunar-Earth flyby on 19 August 2024. The main aim of JANUS’s observations during the lunar-Earth flyby was to evaluate how well the instrument is performing, not to make scientific measurements.
This image of our own Moon was taken during Juice’s lunar-Earth flyby on 19 August 2024. The main aim of JANUS’s observations during the lunar-Earth flyby was to evaluate how well the instrument is performing, not to make scientific measurements. ESA/Juice/JANUS

The images show the kinds of detail that the Janus camera is able to pick up, with the views of the moon’s surface a particular highlight. The researchers didn’t only take pictures, though — they also performed tests like deliberately blurring images to test out their algorithms, which are designed to restore lost or corrupted data. They also took images using different settings and time intervals, to see in practice what data the different options gave them.

Recommended Videos

Juice is now continuing on its long journey, set to arrive at Jupiter in 2031. More images from the flyby can be found on the European Space Agency website.

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
NASA can now talk to its spacecraft using lasers
NASA’s Psyche spacecraft is depicted receiving a laser signal from the Deep Space Optical Communications uplink ground station at JPL’s Table Mountain Facility in this artist’s concept. The DSOC experiment consists of an uplink and downlink station, plus a flight laser transceiver flying with Psyche.

NASA has a communications problem: The radio frequencies used by spacecraft for communications are getting too busy. As more missions are sent into outer space, and as these missions carry increasingly sophisticated instruments, the amount of data that needs to be sent back to Earth is growing beyond the capacity of current radio communications systems.

The solution to this problem is to use higher frequencies, which can carry more data. But before any new communication system can be put into widespread use, it has to be tested.

Read more
How scientists are keeping the Orion spacecraft safe from radiation
The two ‘phantoms’ of the Matroshka AstroRad Radiation Experiment (MARE), which will fly to the Moon on NASA's first Artemis I mission, occupy two of passenger seats (Seat #3 and Seat #4) in the Orion capsule.

When NASA's Artemis I mission launched on its journey around the moon in 2022, there weren't any astronauts aboard -- but there were two torso-shaped dummies, named Helga and Zohar, who were designed to test how much radiation astronauts can expect to be exposed to when they do eventually fly on the Artemis II and III missions.

Now, the German space agency DLR has released the first results from the radiation study, and the good news for future moon explorers is that it looks like the radiation levels are within acceptable limits inside shielded areas of the spacecraft. Radiation is a concern once people travel outside the protective magnetosphere of Earth, and the region of charged particles called the Van Allen belt that help to protect us on the ground from radiation exposure. When traveling beyond low-Earth orbit and out to the moon and beyond, astronauts will be exposed to radiation that can cause cancer, cardiovascular disease, and other health problems.

Read more
James Webb image shows two galaxies in the process of colliding
This composite image of Arp 107, created with data from the James Webb Space Telescope’s NIRCam (Near-InfraRed Camera) and MIRI (Mid-InfraRed Instrument), reveals a wealth of information about the star formation taking place in these two galaxies and how they collided hundreds of million years ago. The near-infrared data, shown in white, show older stars, which shine brightly in both galaxies, as well as the tenuous gas bridge that runs between them. The vibrant background galaxies are also brightly illuminated at these wavelengths.

A new image from the James Webb Space Telescope shows one of the universe's most dramatic events: the colliding of two galaxies. The pair, known as Arp 107, are located located 465 million light-years away and have been pulled into strange shapes by the gravitational forces of the interaction, but this isn't a purely destructive process. The collision is also creating new stars as young stars are born in swirling clouds of dust and gas.

The image above is a composite, bringing together data from Webb's NIRCam (Near-InfraRed Camera) and MIRI (Mid-InfraRed Instrument). These two instruments operate in different parts of the infrared, so they can pick up on different processes. The data collected in the near-infrared range is seen in white, highlighting older stars and the band of gas running between the two galaxies. The mid-infrared data is shown in orange and red, highlighting busy regions of star formation, with bright young stars putting out large amounts of radiation.

Read more