Skip to main content

Beautiful images show the stripes of Jupiter in three different wavelengths

If you think Jupiter is beautiful in the visible light spectrum, wait until you see it in infrared and ultraviolet. Three new images of the planet have been released by the National Science Foundation’s NOIRLab, showing the planet in all its beauty in various wavelengths.

The visible light image of Jupiter (directly below), captured by the Wide Field Camera 3 on the Hubble Space Telescope, will be the most familiar. The image shows the details of the bands around the planet, formed by rotating clouds which are endlessly swirling and changing. You can also see the famous Great Red Spot in the lower half of the image to the left, which is the result of the largest storm in the solar system. The storm is over 10,000 miles wide and has wind speeds of up to 268 mph.

Recommended Videos

In the upper half of the image, you can also see a long, slim brown feature called a brown barge, a type of weather formation that stretches nearly 45,000 miles across the planet.

This visible-light image of Jupiter was created from data captured on 11 January 2017 using the Wide Field Camera 3 on the Hubble Space Telescope.
This visible-light image of Jupiter was created from data captured on January 11, 2017, using the Wide Field Camera 3 on the Hubble Space Telescope. NASA/ESA/NOIRLab/NSF/AURA/M.H. Wong and I. de Pater (UC Berkeley) et al. Acknowledgments: M. Zamani

In the infrared view of Jupiter (directly below), captured by the Gemini North telescope in Hawaii, you can see warmer areas of the planet indicated in brighter colors. There are four notable hot spots just above the equator, while in this wavelength the Great Red Spot appears dark because of its clouds.

This infrared view of Jupiter was created from data captured on 11 January 2017 with the Near-InfraRed Imager (NIRI) instrument at Gemini North in Hawaiʻi, the northern member of the international Gemini Observatory, a Program of NSF’s NOIRLab. It is actually a mosaic of individual frames that were combined to produce a global portrait of the planet.
This infrared view of Jupiter was created from data captured on January 11, 2017, with the Near-InfraRed Imager (NIRI) instrument at Gemini North in Hawaii, the northern member of the international Gemini Observatory, a Program of the National Science Foundation’s NOIRLab. It is actually a mosaic of individual frames that were combined to produce a global portrait of the planet. International Gemini Observatory/NOIRLab/NSF/AURA, M.H. Wong (UC Berkeley) et al. Acknowledgments: M. Zamani

Finally, the stunning ultraviolet image directly below was also captured by Hubble. In this image, the Great Red Spot is dark but clearly visible. The infrared and visible light images pick up on the molecules that give the spot its distinctive color, called chromophores, and absorb blue and ultraviolet light.

This ultraviolet image of Jupiter was created from data captured on 11 January 2017 using the Wide Field Camera 3 on the Hubble Space Telescope.
This ultraviolet image of Jupiter was created from data captured on January 11, 2017, using the Wide Field Camera 3 on the Hubble Space Telescope. NASA/ESA/NOIRLab/NSF/AURA/M.H. Wong and I. de Pater (UC Berkeley) et al. Acknowledgments: M. Zamani

By comparing these three images, scientists are able to examine features they might miss if they looked in only one wavelength. They can also compare features across wavelengths, as all three images were captured at the same time, on January 11, 2017.

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Gemini North telescope’s chipped mirror has been repaired
Gemini North, part of the International Gemini Observatory operated by NSF’s NOIRLab, is back observing the night sky following the repair and refurbishment of its primary mirror. The telescope’s debut observation captured the supernova dubbed SN 2023ixf (lower left), which was discovered on 19 May by Japanese astronomer Koichi Itagaki. This dazzling point of light, the closest supernova seen in the past five years, is located along one of the spiral arms of the Pinwheel Galaxy (Messier 101).

Modern telescopes are huge and complex installations. They may be either an array of many smaller dishes or a single giant dish, but in either case they are equipped with delicate mirrors, as well as observation instruments, controls for pointing the telescope in the required direction, and electronic systems for recording data. That means that these large installations are vulnerable to hardware failures, such as the collapse of the famous Arecibo Observatory, which was catastrophically damaged due to a cable snapping in 2020.

The large Gemini North telescope, run by the National Science Foundation (NSF)'s NOIRLab and located on the Maunakea volcano on the island of Hawai‘i, suffered damage last year when the telescope's primary mirror was chipped. According to NSF, "[w]hile moving the primary mirror in preparation for stripping its reflective protected silver coating, it contacted an earthquake restraint on the facility’s wash cart, chipping the edge."

Read more
Image of darkness and light shows new stars being born in Lupus 3 nebula
The two young, low-mass proto-stars HR 5999 and HR 6000 illuminate nearby dust, creating the reflection nebula Bernes 149. These stars grew out of the dusty dark cloud of Lupus 3, part of a larger complex of as many as nine dark clouds.

A gorgeous new image of a nebular 500 light-years away gives a peek into the process of star formation.

This image from the Dark Energy Camera shows both the dark cloud of Lupus 3 and the shining bright young stars of the nebula Bernes 149. The dark cloud here is essential to the star formation process, as it is a collection of gas and dust which provides the building blocks for new stars to be born. Known as a dark nebula because of its density, Lupus 3 obscures the light of the stars behind it, giving the impression of a swath of black across the starry sky.

Read more
Hubble observes weird star system with three off-kilter, planet-forming disks
This illustration is based on Hubble Space Telescope images of gas and dust discs encircling the young star TW Hydrae. We have an oblique view of three concentric rings of dust and gas. At the centre is the bright white glow of the central star. The reddish-coloured rings are inclined to each other and are therefore casting dark shadows across the outermost ring.

Planets form from large disks of dust and gas that collect around their host stars. Billions of years ago, our solar system would have looked like a single point of bright light coming from the sun, with a disk of matter swirling around it that eventually clumped into planets. To learn about how our solar system formed, it's helpful to look at other systems that are currently going through this process -- such as TW Hydrae, a system located 200 light-years away and turned face-on toward us, making it the perfect place to observe planetary formation.

But there's something odd about the TW Hydrae system. In 2017, astronomers first noticed a strange shadow that was visible on the disk of dust and gas surrounding the star. While such shadows are typically from a planet formed within the disk, in this case the shadow's shape and movement suggested it was actually from a second disk, located within the first disk and tilted at a different angle. Now, astronomers think they have spotted evidence of a third disk, with all three stacked up and creating a complex pattern of shadows.

Read more