Skip to main content

James Webb begins aligning 3 of its instruments

The James Webb Space Telescope recently hit a big milestone when engineers completed the alignment of its mirrors. But there is still a lot to do before the telescope is ready to begin science operations this summer. With the mirrors aligned with Webb’s instruments, NIRCam, now the team needs to work on aligning the other three instruments, and it recently began to do that with a process called multi-instrument multi-field (MIMF) alignment.

The six-week MIMF alignment process will align the three instruments plus Webb’s guidance system, called the Fine Guidance Sensor (FGS). This process is necessary to allow Webb to switch seamlessly between its different instruments. All the cameras observe at the same time, so if researchers want to look at a particular target like a star using different instruments, the telescope needs to be repointed to move the target into the field of view of the new instrument.

NASA scientists have shared more about how the MIMF alignment works in a blog post. “After MIMF, Webb’s telescope will provide a good focus and sharp images in all the instruments. In addition, we need to precisely know the relative positions of all the fields of view,” wrote Jonathan Gardner, Webb deputy senior project scientist, and Stefanie Milam, Webb deputy project scientist for planetary science, at NASA’s Goddard Space Flight Center.

“Over last weekend, we mapped the positions of the three near-infrared instruments relative to the guider and updated their positions in the software that we use to point the telescope. In another instrument milestone, FGS recently achieved ‘fine guide’ mode for the first time, locking onto a guide star using its highest precision level. We have also been taking ‘dark’ images, to measure the baseline detector response when no light reaches them – an important part of the instrument calibration.”

The next instruments to be aligned will be the Near-Infrared Spectrograph and the Near InfraRed Imager and Slitless Spectrograph, which along with NIRCam are the three near-infrared instruments. The final instrument, the Mid-Infrared Instrument or MIRI, will be the last to be aligned as it still needs to be cooled down to its operating temperature, which is an almost unfathomably chilly seven degrees above absolute zero.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
One galaxy, two views: see a comparison of images from Hubble and Webb
The peculiar galaxy NGC 3256 takes centre stage in this image from the NASA/ESA Hubble Space Telescope. This distorted galaxy is the wreckage of a head-on collision between two spiral galaxies which likely occurred 500 million years ago, and it is studded with clumps of young stars which were formed as gas and dust from the two galaxies collided.

It might not seem obvious why astronomers need multiple different powerful space telescopes. Surely a more powerful telescope is better than a less powerful one? So why are there multiple different telescopes in orbit, either around Earth or around the sun?

The answer is to do with two main factors. One is the telescope's field of view, meaning how much of the sky it looks at. Some telescopes are useful for looking at large areas of the sky in less detail, working as survey telescopes to identify objects for further research or to look at the universe on a large scale -- like the recently launched Euclid mission. While others, like the Hubble Space Telescope, look at small areas of the sky in great detail, which is useful for studying particular objects.

Read more
James Webb spots the most distant active supermassive black hole ever discovered
Crop of Webb's CEERS Survey image.

As well as observing specific objects like distant galaxies and planets here in our solar system, the James Webb Space Telescope is also being used to perform wide-scale surveys of parts of the sky. These surveys observe large chunks of the sky to identify important targets like very distant, very early galaxies, as well as observe intriguing objects like black holes. And one such survey has recently identified the most distant active supermassive black hole seen so far.

While a typical black hole might have a mass up to around 10 times that of the sun, supermassive black holes are much more massive, with a mass that can be millions or even billions of times the mass of the sun. These monsters are found at the heart of galaxies and are thought to play important roles in the formation and merging of galaxies.

Read more
Saturn as you’ve never seen it before, captured by Webb telescope
Saturn captured by the James Webb Space Telescope

NASA has shared a gorgeous image of Saturn captured recently by the James Webb Space Telescope (JWST).

Webb’s first near-infrared observations of the second largest planet in our solar system also show several of Saturn’s moons: Dione, Enceladus, and Tethys.

Read more