Skip to main content

The first black hole ever photographed is ‘wobbling,’ scientists say

Scientists have found the first black hole ever to get its picture taken, known as M87, is rotating and changing over time. 

According to a new study published in The Astrophysical Journal, the black hole’s ring of material around it and its crescent-like shadow feature haven’t changed in size over the period of observation, but its brightness, and where it is bright, have drastically changed. The shadow appears to be “wobbling” over time.  

“Because the flow of matter is turbulent, the crescent appears to wobble with time,” said Maciek Wielgus of the Harvard and Smithsonian Center for Astrophysics and lead author of the paper. “Actually, we see quite a lot of variation there, and not all theoretical models of accretion allow for so much wobbling. What it means is that we can start ruling out some of the models based on the observed source dynamics.”

M. Wielgus & the EHT Collaboration

The study looked at preliminary data of the M87 black hole from 2009 to 2013 and the 2017 images using the Event Horizon Telescope. Scientists found that the ring on the black hole’s right side was brightest in 2013, while the bottom of the ring was the brightest in 2017. 

M87’s enormous size (6.5 billion times the mass of our sun) gives scientists an advantage to view these smaller changes over time. The findings released in Wednesday’s study will better help scientists understand phenomena such as relativistic jets and general relativity theory.

The M87 black hole is located in the Messier 87 galaxy, 55 million light-years away, and was captured in an image last year.

After that historical photo, scientists also discovered that baby black holes “chirp” as they are born, just as Albert Einstein predicted. The pitch of the waves could signal the black hole’s potential mass and spin and the loudest part of this “chirp” indicates the exact moment when the two black holes collided, creating an entirely new black hole. 

Editors' Recommendations

Allison Matyus
Former Digital Trends Contributor
Allison Matyus is a general news reporter at Digital Trends. She covers any and all tech news, including issues around social…
Astronomers spot a monster black hole ‘practically in our backyard’
The cross-hairs mark the location of the newly discovered monster black hole.

Black holes come in a variety of sizes, from stellar black holes a few times the mass of the sun all the way up to supermassive black holes, which are millions of times the mass of the sun and lurk at the heart of galaxies. Recently, astronomers discovered a massive black hole just 1,550 light-years away, which is right in our neighborhood, astronomically speaking. It is one of the closest black holes ever discovered, with a mass 12 times that of the sun. Being so close to us, it's an exciting target for future research.

The cross-hairs mark the location of the newly discovered monster black hole. Sloan Digital Sky Survey / S. Chakrabart et al.

Read more
Something strange is up with this black hole
Artist’s illustration of tidal disruption event AT2019dsg where a supermassive black hole spaghettifies and gobbles down a star. Some of the material is not consumed by the black hole and is flung back out into space.

One of the first things that people learn about black holes is that they absorb everything which comes close to them, but this isn't exactly accurate. It is true that once anything passes the event horizon of a black hole it can never escape, but there is a significant area around the black hole where its gravitational effects are still extremely strong but things can still escape. In fact, black holes regularly give off dramatic jets of matter, which are typically thrown out when material falls into the black hole and a small amount is ejected outward at great speeds.

But astronomers recently discovered a totally mysterious phenomenon, where a black hole is ejecting material years after it ripped apart a star. The black hole AT2019dsg is located 665 million light-years away and was observed tearing apart the star in 2018, then for unknown reasons, it became extremely active again in 2021. “This caught us completely by surprise — no one has ever seen anything like this before,” said lead author Yvette Cendes, a research associate at the Center for Astrophysics | Harvard & Smithsonian (CfA).

Read more
Astronomers want your help to spot hidden black holes
This simulation of a supermassive black hole shows how it distorts the starry background and captures light, producing a black hole silhouettes.

Black holes are some of the most mind-bending objects in the universe. They are so dense that anything which passes their event horizon, even light, can't escape. That's where they get their name, as the black hole itself is impossible to see. Fortunately for researchers, many black holes have material like dust and gas around them, and when this material falls into a black hole it can give off bursts of X-rays which allow them to locate the black hole.

But this isn't the case for every black hole. Some are not taking in material, meaning they don't give off X-rays and are much harder to locate. Now, a citizen science project is inviting members of the public to help search for these "hidden" black holes.

Read more