Skip to main content

This giant map of minerals on Mars is a piece of modern art

The rainbow-hued images might look like some kind of digital art, but in fact, they are maps of Mars, taken using the Compact Reconnaissance Imaging Spectrometer for Mars, or CRISM, an instrument on board NASA’s Mars Reconnaissance Orbiter (MRO).

This spacecraft has been in orbit around Mars since 2006, taking images of the planet using its cameras such as HiRISE and also gathering spectrometer and radar data. CRISM is a spectrometer, meaning it splits light into different wavelengths to see what an object is made of. Different colors in the different maps below represent particular minerals on the Martian surface, allowing researchers to look at the planet’s geology from orbit.

Seen are six views of the Nili Fossae region of Mars captured by the Compact Reconnaissance Imaging Spectrometer for Mars, or CRISM, one of the instruments aboard NASA's Mars Reconnaissance Orbiter.
Seen are six views of the Nili Fossae region of Mars captured by the Compact Reconnaissance Imaging Spectrometer for Mars, or CRISM, one of the instruments aboard NASA’s Mars Reconnaissance Orbiter. NASA/JPL-Caltech/JHU-APL

NASA recently released the first part of a highly detailed map of almost the entire surface of Mars, in the form of a 5.6 gigapixel image in 72 colors. This was created from over 50,000 segments, each a strip around 330 miles in length and six miles wide, which were stitched together to create the final map. This map shows the overall reflectiveness of each patch of the Martian surface, with redder portions of the map being places where there is lots of bright red dust, and darker portions being rockier and less dusty.

This near-global map was captured by NASA’s Mars Reconnaissance Orbiter using its Compact Reconnaissance Imaging Spectrometer for Mars, or CRISM. The yellow square indicates the Nili Fossae region of Mars, which is highlighted in six views in the previous image.
This near-global map was captured by NASA’s Mars Reconnaissance Orbiter using its Compact Reconnaissance Imaging Spectrometer for Mars, or CRISM. The yellow square indicates the Nili Fossae region of Mars, which is highlighted in six views in the previous image. NASA/JPL-Caltech/JHU-APL

There will be batches of CRISM data corresponding to each individual tile of the map, like those shown in the image at the top of the page, released over the next six months until the survey is complete. The total coverage of CRISM data will include 86% of Mars’s surface, providing an invaluable map of where key minerals are located. From this, researchers can both understand more about the history of water on the planet and identify new targets for scientific research or even help choose landing sites for rover missions.

“It’s effectively a whole new data set that will fuel a second wave of discoveries about Mars’ surface composition,” said CRISM’s principal investigator Scott Murchie in a statement. “In fact, one of the objectives of the next MRO extended mission is for its HiRISE camera to go back and image in color the hundreds of new high-science priority spots we’re finding in the map — spots that haven’t been imaged at high resolution because their importance wasn’t known.”

There will also be another map released later this year showing the location of iron-bearing minerals, which are helpful to understand the history of water on the planet and could even help in the search for evidence of ancient life there.

“The CRISM investigation has been one of the crown jewels of NASA’s MRO mission,” said Richard Zurek, the mission’s project scientist at NASA’s Jet Propulsion Laboratory. “Analyses based on these final maps will provide new insights into the history of Mars for many years to come.”

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
NASA’s InSight lander looks into Mars to study the planet’s core
This artist’s concept shows a cutaway of Mars, along with the paths of seismic waves from two separate quakes in 2021. Detected by NASA’s InSight mission, these seismic waves were the first ever identified to enter another planet’s core.

NASA's Mars InSight lander may have come to the end of its mission last year, but data from the lander is still being used to contribute to science. Data that the lander collected on marsquakes, seismic events that are similar to earthquakes, has been used to get the best look yet at Mars's core.

The lander was armed with a highly sensitive seismometer instrument that could detect seismic waves as they moved through the martian interior. By looking at the way in which these waves bounced off boundaries and moved at different speeds through different materials, scientists can work out what the inside of a planet is composed of. The latest findings show that the martian core is around 2,220 miles across, which is smaller than previously thought. The core is also denser than previously believed The results also showed that around one-fifth of the core, which is made up of liquid iron alloy, is composed of sulfur, oxygen, carbon, and hydrogen.

Read more
Perseverance and Ingenuity play a game of tag across Mars
Perseverance looks towards the Delta on Sol 419, capturing this image with its Right Navigation Camera.

The Perseverance rover is currently trundling its way across Mars' Jezero Crater, on its way to explore an exciting location called the delta. It's the site of an ancient river delta, and scientists are looking forward to scouring this area for two particular reasons: firstly, because if there ever was life on Mars, then this is one of the most likely locations we could find evidence of it, and secondly, because it should be possible to find rocks from miles away that were carried to this location by the river long ago.

But it takes a long time for a little rover to travel across Mars' rocky surface, so Perseverance has been making slow progress as it makes the climb up the delta and toward the river deposits the scientists are so interested in. Now, though, the rover has a sidekick to help it, as the Ingenuity helicopter has arrived to join the rover and scout ahead to find the best path forward.

Read more
See Mars’s beautiful Jezero Crater from the air in flyover video
Still from the video of Jezero crater created by merging data from various Mars orbiting spacecraft.

If you're feeling in need of some travel to broaden your horizons but you don't have the option to leave home right now, the European Space Agency (ESA) has something special to offer you: A virtual flight over the famous Jezero Crater on Mars.

Visit Jezero Crater on Mars in this flyover created using orbiter data

Read more