Skip to main content

Here’s how NASA’s Perseverance rover will collect samples from martian surface

NASA’s Perseverance Mars Rover Sample Caching System

In just a few months, NASA will launch its newest rover, Perseverance, on its journey to Mars. The rover will search for evidence of ancient life on the planet, including the collection of martian rock and soil samples. And if you’ve ever wondered how a robot would go about collecting a sample from another planet, NASA has shared more information about how the process works.

Comparing the Perseverance mission to Mars to the Apollo mission to the moon, Adam Steltzner, chief engineer for the Mars 2020 Perseverance rover mission at NASA’s Jet Propulsion Laboratory, pointed out the importance of humans in traditional sample collection: “While you cannot help but marvel at what was achieved back in the days of Apollo, they did have one thing going for them we don’t: Boots on the ground,” he said in a statement. “For us to collect the first samples of Mars for return to Earth, in place of two astronauts we have three robots that have to work with the precision of a Swiss watch.”

To achieve this, the rover will use its Sample Caching System. The system includes a rotating array of drill bits to allow the rover to dig into different sorts of rock and soil, plus abrasion bits to remove the top layer of a rock and also the rover’s spectrometry instruments to analyze samples.

“Essentially, after our rotary percussive drill takes a core sample, it will turn around and dock with one of the four docking cones of the bit carousel,” Steltzner explained. “Then the bit carousel rotates that Mars-filled drill bit and a sample tube down inside the rover to a location where our sample handling arm can grab it. That arm pulls the filled sample tube out of the drill bit and takes it to be imaged by a camera inside the Sample Caching System.”

Engineers and technicians working on the Mars 2020 Perseverance team
Engineers and technicians working on the Mars 2020 Perseverance team insert 39 sample tubes into the belly of the rover. Each tube is sheathed in a gold-colored cylindrical enclosure to protect it from contamination. Perseverance rover will carry 43 sample tubes to Mars’ Jezero Crater. The image was taken at NASA’s Kennedy Space Center in Florida on May 20, 2020. NASA/JPL-Caltech

In total, the Sample Caching System has an incredible 3,000 parts, all of which must work in unison to drill, handle, and store samples of the martian rock and soil.

“It sounds like a lot, but you begin to realize the need for complexity when you consider the Sample Caching System is tasked with autonomously drilling into Mars rock, pulling out intact core samples and then sealing them hermetically in hyper-sterile vessels that are essentially free of any Earth-originating organic material that could get in the way of future analysis,” Steltzner said. “In terms of technology, it is the most complicated, most sophisticated mechanism that we have ever built, tested, and readied for spaceflight.”

Once a sample has been collected and imaged, it is sealed up in its tube and returned to storage inside the rover. This process is complex enough, but actually getting the samples back to Earth is a whole new challenge. The current plan involves sending two spacecraft to Mars — one to land on the planet and rendezvous with the rover to collect the samples, then ascend into orbit. The second craft would rendezvous with this first craft and carry the samples back to Earth.

NASA hopes to land the first sample return craft in 2028, and return the samples to Earth by 2031.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
NASA’s Mars rover has just completed a historic task
NASA's Perseverance rover on Mars.

Less than six weeks after it began the task, NASA’s Perseverance Mars rover has completed what the space agency is calling “humanity’s first sample depot on another planet.”

https://twitter.com/NASAJPL/status/1620110707877617666

Read more
Perseverance rover celebrates its first Martian birthday
mars 2020 perseverance rover

The Perseverance rover currently exploring Mars recently celebrated a milestone: its first Martian year since landing. Though the rover landed in the Jezero Crater in February 2021, making it almost two Earth years old, NASA measures its Mars missions in Martian years. As Mars orbits further from the sun than the Earth does, it has longer years, at 687 days, so the rover hit its first Martian birthday this week on January 6.

The end of Perseverance's first Martian year also marks the end of its primary mission, as the rover was designed to operate for one Martian year minimum. But the rover is still healthy and going strong, so it immediately began its extended mission in which it will continue to explore the crater for evidence of ancient life and to collect samples of Martian rock and regolith.

Read more
Perseverance rover experiment produces record amount of oxygen on Mars
In this image, the gold-plated Mars Oxygen In-Situ Resource Utilization Experiment (MOXIE) Instrument shines after being installed inside the Perseverance rover.

Inside the belly of the Perseverance rover, currently exploring Mars's Jezero Crater, is a small box with a big job. The Mars Oxygen In Situ Resource Utilization Experiment or MOXIE aims to produce oxygen from Mars's abundant carbon dioxide, paving the way for providing resources for future crewed missions to the Red Planet.

In the summer of this year, MOXIE tested out its fastest production of oxygen to date, making more than 10 grams of oxygen per hour. The device works by taking in carbon dioxide from the atmosphere, using some electricity, and turning it into oxygen and carbon monoxide. The carbon monoxide can be released and the oxygen kept -- making the system like a fuel cell run in reverse.

Read more