Skip to main content

Trippy NASA video shows two black holes interacting

The Doubly Warped World of Binary Black Holes

Black holes are so dense that their gravity pulls in everything around them, even light. But that doesn’t mean that they are invisible to view. They collect clouds of dust and gas which form a structure around the black hole called an accretion disk, from which matter is pulled into the black hole over time. These accretion disks give off light and form the distinctive humped appearance made famous by movies like Interstellar.

Recommended Videos

Now, NASA has created a visualization, shared in the video above, showing what happens when two of these black holes pass one another, demonstrating how the gravity of each warps the accretion disk of the other. The larger black hole, equivalent to 200 times the mass of the sun, is shown in orange, and the smaller black hole is shown in blue. The effect of the extreme gravitational forces creates unexpected and twisted warping of the disks.

In this frame from the new visualization, a supermassive black hole weighing 200 million solar masses lies in the foreground. Its gravity distorts light from the accretion disk of a smaller companion black hole almost directly behind it, creating this surreal view. Different colors for the accretion disks make it easier to track the contributions of each one.
In this frame from the new visualization, a supermassive black hole weighing 200 million solar masses lies in the foreground. Its gravity distorts light from the accretion disk of a smaller companion black hole almost directly behind it, creating this surreal view. Different colors for the accretion disks make it easier to track the contributions of each one. NASA’s Goddard Space Flight Center/Jeremy Schnittman and Brian P. Powell

In reality, most of the light emitted in this situation would be in the ultraviolet range, rather than the visible light range. But it is accurate that material orbiting a smaller black hole would experience more intense gravitational forces, which would make it hotter. And hotter material gives off light which is shifted toward the blue end of the spectrum.

The visualization isn’t just for fun though. Simulations like this one are used to investigate what features astronomers could expect to see when observing real black holes.

“We’re seeing two supermassive black holes, a larger one with 200 million solar masses and a smaller companion weighing half as much,” said Jeremy Schnittman, an astrophysicist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, who created the visualization, in a statement. “These are the kinds of black hole binary systems where we think both members could maintain accretion disks lasting millions of years.”

This visualization shows a phenomenon called gravitational lensing, in which a massive body distorts the image of a body behind it. A similar method can be used to investigate distant stars and to identify exoplanets.

“A striking aspect of this new visualization is the self-similar nature of the images produced by gravitational lensing,” Schnittman explained. “Zooming into each black hole reveals multiple, increasingly distorted images of its partner.”

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Watch NASA’s new solar array unfurl on the space station
A new rollout solar array on the ISS.

A view of the new rollout solar array unfolding after NASA astronauts Steve Bowen and Woody Hoburg successfully installed it to the 1B power channel on June 15, 2023. NASA TV

Two NASA astronauts completed a successful spacewalk at the International Space Station on Thursday.

Read more
How to watch two U.S. astronauts on a spacewalk at the ISS on Friday
Astronaut on spacewalk

NASA Live: Official Stream of NASA TV

NASA is making final preparations for the seventh spacewalk to take place at the International Space Station (ISS) this year.

Read more
NASA performs critical tests for Artemis V moon rocket
NASA tests the SLS rocket's new RS-25 engines for the Artemis V mission.

NASA is performing hot fire tests of the new RS-25 engines that will power the agency’s Space Launch System (SLS) rocket toward the moon in the Artemis V mission, currently scheduled for 2029.

“NASA entered the stretch run of a key RS-25 certification engine test series with a successful hot fire [on] June 1, continuing to set the stage for future Artemis missions to the moon,” the agency said in a post on its website.

Read more