Skip to main content

Trippy NASA video shows two black holes interacting

The Doubly Warped World of Binary Black Holes

Black holes are so dense that their gravity pulls in everything around them, even light. But that doesn’t mean that they are invisible to view. They collect clouds of dust and gas which form a structure around the black hole called an accretion disk, from which matter is pulled into the black hole over time. These accretion disks give off light and form the distinctive humped appearance made famous by movies like Interstellar.

Recommended Videos

Now, NASA has created a visualization, shared in the video above, showing what happens when two of these black holes pass one another, demonstrating how the gravity of each warps the accretion disk of the other. The larger black hole, equivalent to 200 times the mass of the sun, is shown in orange, and the smaller black hole is shown in blue. The effect of the extreme gravitational forces creates unexpected and twisted warping of the disks.

In this frame from the new visualization, a supermassive black hole weighing 200 million solar masses lies in the foreground. Its gravity distorts light from the accretion disk of a smaller companion black hole almost directly behind it, creating this surreal view. Different colors for the accretion disks make it easier to track the contributions of each one.
In this frame from the new visualization, a supermassive black hole weighing 200 million solar masses lies in the foreground. Its gravity distorts light from the accretion disk of a smaller companion black hole almost directly behind it, creating this surreal view. Different colors for the accretion disks make it easier to track the contributions of each one. NASA’s Goddard Space Flight Center/Jeremy Schnittman and Brian P. Powell

In reality, most of the light emitted in this situation would be in the ultraviolet range, rather than the visible light range. But it is accurate that material orbiting a smaller black hole would experience more intense gravitational forces, which would make it hotter. And hotter material gives off light which is shifted toward the blue end of the spectrum.

The visualization isn’t just for fun though. Simulations like this one are used to investigate what features astronomers could expect to see when observing real black holes.

“We’re seeing two supermassive black holes, a larger one with 200 million solar masses and a smaller companion weighing half as much,” said Jeremy Schnittman, an astrophysicist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, who created the visualization, in a statement. “These are the kinds of black hole binary systems where we think both members could maintain accretion disks lasting millions of years.”

This visualization shows a phenomenon called gravitational lensing, in which a massive body distorts the image of a body behind it. A similar method can be used to investigate distant stars and to identify exoplanets.

“A striking aspect of this new visualization is the self-similar nature of the images produced by gravitational lensing,” Schnittman explained. “Zooming into each black hole reveals multiple, increasingly distorted images of its partner.”

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
NASA reveals date for attempted return flight of troubled Starliner
Boeing's Starliner spacecraft docked at the space station.

NASA is targeting Friday, September 6, for the return flight of Boeing Space’s troubled Starliner spacecraft, the agency revealed on Thursday.

The vehicle will come home from the International Space Station (ISS) nearly three months later than originally planned and without the crew that it arrived with. The flight, the outcome of which could determine the Starliner’s future, is expected to take about six hours, NASA said in a blog post on Thursday.

Read more
Event Horizon Telescope can now take images of black holes that are 50% sharper
Illustration of the highest-resolution detections ever made from the surface of Earth

The Event Horizon Telescope project, the group that took the first-ever image of a black hole, has made another historic breakthrough, making the highest-ever resolution observations of space taken from the Earth's surface. The project uses facilities around the globe to turn the Earth itself into a giant observatory, which is capable of taking highly precise measurements of distant galaxies.

The latest observations made use of the Atacama Large Millimeter/submillimeter Array (ALMA), a large array of radio telescopes located in Chile, as well as other facilities in Spain, France, and Hawaii. To get higher-resolution images than previous observations, scientists weren't able to make the telescope bigger -- as it was already the size of the Earth -- so they observed at a higher frequency instead.

Read more
NASA answers all of your questions on the troubled Starliner mission
Boeing's Starliner spacecraft docked at the space station.

NASA has updated an FAQ page on its website with the latest information on the state of Boeing Space’s beleaguered Starliner mission.

With so much speculation surrounding the state of the spacecraft, the page offers a definitive guide on where the mission is at right now.

Read more