Skip to main content

NASA’s Webb telescope captures the majestic Tarantula Nebula

The most powerful space telescope ever built is continuing to send back dazzling images of the universe from its orbit a million miles from Earth.

The James Webb Space Telescope’s latest stunner shows the Tarantula Nebula, described by NASA as “a raucous region of star birth that resides 170,000 light-years away in the Large Magellanic Cloud, a small, satellite galaxy of our Milky Way.”

The Tarantula Nebula captured by the James Webb Space Telescope.
As per NASA: In this mosaic image stretching 340 light-years across, Webb’s Near-Infrared Camera (NIRCam) displays the Tarantula Nebula star-forming region in a new light, including tens of thousands of never-before-seen young stars that were previously shrouded in cosmic dust. The most active region appears to sparkle with massive young stars, appearing pale blue. NASA, ESA, CSA, STScI, Webb ERO Production Team

The Tarantula Nebula earned its name for the dusty filaments that appear in earlier images captured by other telescopes, and is a favorite of astronomers with a special interest in star formation, NASA said. This is because the nebula’s chemical composition and development are similar to the enormous star-forming regions observed at the universe’s so-called “cosmic noon,” a time when the cosmos was just a few billion years old and star formation was at its height.

Also known as 30 Doradus, the nebula’s cavity, which you can see at the center of the image, has been hollowed out by intense radiation from a cluster of huge young stars that appear in the image as blue dots of light.

“Only the densest surrounding areas of the nebula resist erosion by these stars’ powerful stellar winds, forming pillars that appear to point back toward the cluster,” NASA says.

There’s still much for astronomers to learn about how stars form, but Webb’s advanced infrared cameras are sending back new kinds of images that reveal events behind the thick clouds of stellar nurseries.

“Webb has already begun revealing a universe never seen before, and is only getting started on rewriting the stellar creation story,” NASA said.

The James Webb Space Telescope launched from the Kennedy Space Center in Florida toward the end of 2021 and is a joint mission involving NASA and its European and Canadian counterparts.

Since reaching its orbital position in deep space earlier in the summer, it’s been beaming back incredible imagery for astronomers to examine as they seek to learn more about the origins of the universe while also searching for planets like our own that could support life.

Trevor Mogg
Contributing Editor
Not so many moons ago, Trevor moved from one tea-loving island nation that drives on the left (Britain) to another (Japan)…
Zoom into stunning James Webb image to see a galaxy formed 13.4 billion years ago
A section of a James Webb image showing a small part of the Extended Groth Strip, located between the Ursa Major and Boötes constellations.

One of the amazing things about the James Webb Space Telescope is the level of detail it is able to capture of very distant objects -- but it can be hard to picture what that means when the distances being considered are so large. Now, a new visualization gives a feel of just how detailed the data from the telescope is, by showing how it's possible to start with a stunning view of thousands of galaxies and zoom closer and closer in until you reach just one.

CEERS: Flight to Maisie's Galaxy

Read more
One galaxy, two views: see a comparison of images from Hubble and Webb
The peculiar galaxy NGC 3256 takes centre stage in this image from the NASA/ESA Hubble Space Telescope. This distorted galaxy is the wreckage of a head-on collision between two spiral galaxies which likely occurred 500 million years ago, and it is studded with clumps of young stars which were formed as gas and dust from the two galaxies collided.

It might not seem obvious why astronomers need multiple different powerful space telescopes. Surely a more powerful telescope is better than a less powerful one? So why are there multiple different telescopes in orbit, either around Earth or around the sun?

The answer is to do with two main factors. One is the telescope's field of view, meaning how much of the sky it looks at. Some telescopes are useful for looking at large areas of the sky in less detail, working as survey telescopes to identify objects for further research or to look at the universe on a large scale -- like the recently launched Euclid mission. While others, like the Hubble Space Telescope, look at small areas of the sky in great detail, which is useful for studying particular objects.

Read more
James Webb spots the most distant active supermassive black hole ever discovered
Crop of Webb's CEERS Survey image.

As well as observing specific objects like distant galaxies and planets here in our solar system, the James Webb Space Telescope is also being used to perform wide-scale surveys of parts of the sky. These surveys observe large chunks of the sky to identify important targets like very distant, very early galaxies, as well as observe intriguing objects like black holes. And one such survey has recently identified the most distant active supermassive black hole seen so far.

While a typical black hole might have a mass up to around 10 times that of the sun, supermassive black holes are much more massive, with a mass that can be millions or even billions of times the mass of the sun. These monsters are found at the heart of galaxies and are thought to play important roles in the formation and merging of galaxies.

Read more