Skip to main content

Perseverance rover to drop off samples for return to Earth

The NASA Perseverance rover isn’t only exploring Mars for the scientific discoveries it can make now — it’s also paving the way for future missions which intend to bring samples back from Mars to Earth for the first time. This complicated plan involves multiple vehicles including spacecraft, a lander, and two helicopters, which will work together to collect the samples from the Martian surface, take them to orbit, and return them to Earth. But Perseverance is getting the process started by collecting samples, sealing them up in tubes, and leaving these tubes on the surface for future missions to collect.

Now, NASA and the European Space Agency (ESA) have announced that they have selected the first samples to be deposited on the surface ready for collection. “Never before has a scientifically curated collection of samples from another planet been collected and placed for return to Earth,” said Thomas Zurbuchen, associate administrator for science at NASA Headquarters, in a statement. “NASA and ESA have reviewed the proposed site and the Mars samples that will be deployed for this cache as soon as next month. When that first tube is positioned on the surface, it will be a historic moment in space exploration.”

This annotated image from NASA’s Perseverance shows the location of the first sample depot – where the Mars rover will deposit a group of sample tubes for possible future return to Earth.
This annotated image from NASA’s Perseverance shows the location of the first sample depot – where the Mars rover will deposit a group of sample tubes for possible future return to Earth – in an area of Jezero Crater called Three Forks. The image was taken August 29, 2022. NASA/JPL-Caltech

Ten of the 14 samples which Perseverance has collected so far will be deposited in a region of the Jezero Crater called Three Forks. This region was chosen as it is flat and does not have obstacles like large boulders which could cause issues for future collection. The samples chosen for collection include both igneous and sedimentary rocks collected from the rover’s 8-mile journey across Jezero.

Recommended Videos

“Bringing these samples to our labs would allow us to achieve breakthrough science and understand the specific Jezero area,” said Gerhard Kminek, Mars Sample Return lead scientist for ESA, in a statement. “We could also learn more about the environmental conditions on Mars at a time when life emerged on Earth, and maybe on the Red Planet.”

The Jezero Crater is the site of an ancient lake, and scientists believe that it could once have potentially hosted life. To learn more about whether life could really have thrived on ancient Mars, scientists need to get samples into Earth-based labs to run more detailed experiments than those which are possible on a rover.

Once the rover has dropped off the samples, it will continue exploring and collecting more samples. “While a significant mission milestone will have taken place once those tubes are dropped, it doesn’t mean Perseverance explorations or sample collection has concluded – not by a long shot,” said Perseverance project scientist Ken Farley of Caltech. “Next, we’ll be headed up to the top of the delta to an area that from satellite imagery appears geologically rich, performing science investigations and collecting more rock cores. Mars Sample Return is going to have a lot of great stuff to choose from.”

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Perseverance and Ingenuity play a game of tag across Mars
Perseverance looks towards the Delta on Sol 419, capturing this image with its Right Navigation Camera.

The Perseverance rover is currently trundling its way across Mars' Jezero Crater, on its way to explore an exciting location called the delta. It's the site of an ancient river delta, and scientists are looking forward to scouring this area for two particular reasons: firstly, because if there ever was life on Mars, then this is one of the most likely locations we could find evidence of it, and secondly, because it should be possible to find rocks from miles away that were carried to this location by the river long ago.

But it takes a long time for a little rover to travel across Mars' rocky surface, so Perseverance has been making slow progress as it makes the climb up the delta and toward the river deposits the scientists are so interested in. Now, though, the rover has a sidekick to help it, as the Ingenuity helicopter has arrived to join the rover and scout ahead to find the best path forward.

Read more
How Europe’s ExoMars rover plans to get to Mars without Russia
ESA’s Rosalind Franklin twin rover is back on its wheels and drilled down 1.7 metres into a martian-like ground in Italy – about 25 times deeper than any other rover has ever attempted on Mars. The test rover, known as Amalia, also collected samples for analysis under the watchful eye of European science teams.

Space missions get scuppered for all kinds of reasons, from engineering problems to budget issues. But the ExoMars mission, Europe and Russia's joint plan to send a rover to Mars, faced a complicated political and ethical issue when Russia invaded Ukraine last year. The European Space Agency (ESA) had been working with the Russian space agency Roscomos on the mission but this partnership was soon suspended over what ESA called the "human casualties and tragic consequences of the aggression towards Ukraine."

Without Roscosmos, the Rosalind Franklin rover was left without a launcher and it was not clear whether the rover would be able to launch at all. But loath to give up on the project, ESA decided it would build its own lander and get the rover to Mars hopefully by 2030. This week, ESA shared more information about the plans for the mission and how it is continuing with testing for the rover.

Read more
Rovers could explore lava tubes on Mars or the moon using breadcrumbs
In this artist's impression of the breadcrumb scenario, autonomous rovers can be seen exploring a lava tube after being deployed by a mother rover that remains at the entrance to maintain contact with an orbiter or a blimp.

When looking for safe places for astronauts to stay when they venture away from Earth to new moons and planets, one strong contender is that they should stay underground. Being underground means more protection from harmful space radiation and less exposure to weather events, and nature already creates environments that could be ideal bases in the form of lava tubes. Created when molten lava flows under the surface, lava tubes are thought to exist on both Mars and the moon, providing potential shelter for human explorers.

Now, new research from engineers at the University of Arizona proposes a method for using robots to scout out lava tubes for use as habitats ahead of the arrival of human astronauts. "Lava tubes and caves would make perfect habitats for astronauts because you don't have to build a structure; you are shielded from harmful cosmic radiation, so all you need to do is make it pretty and cozy," said lead author of the research, Wolfgang Fink, in a statement.

Read more