Skip to main content

How bacteria, rust dust, and a murdered star may explain Earth’s Ice Age


Many millions of years ago, time and gravity colluded to kill a star.

Its core collapsed within seconds, fused heavy metals, and hurled them into outer space in a cataclysmic blast. A supergiant — reduced to a cloud of dust and gas.

Recommended Videos

The crime went unreported for eons. Then, about 2.6 million years ago, evidence began to land on Earth. Heavy atoms ejected from the supernova broke through the planet’s atmosphere and settled on its surface as isotopes.

Now, scientists say they’ve uncovered clues to the crime. But something seems suspicious. Soon after the aftermath arrived on Earth, our planet fell into a major ice age — leading many investigators to see the supernova as both victim and accomplice.

Astrophysicist Shawn Bishop has been searching for signs for years. In 1999, his future colleagues at the Technical University of Munich (TUM) discovered an exotic isotope known as iron-60 in the Earth’s crust. It wasn’t expected to be there. Iron-60 is rare on Earth and any of it leftover from the planet’s birth has long since dissipated. This isotope must have extraterrestrial origins, and scientists suspect a supernova may have been the cause.

But the iron-60 signals the researchers originally found were few and far between. The scientists needed more evidence and a better way to detect it.

He stumbled upon a strange and ancient organism that would lead him toward the elusive isotope and, from there, the supernova.

Bishop joined the squad when he arrived at TUM in 2008. One day while searching for clues, he had a flashback to a NASA scientist’s presentation, which pointed out that nano-sized crystals left behind by bacteria could offer fossilized evidence of cosmic events. “So I began to ‘read the literature,'” Bishop tells Digital Trends.

Soon, he stumbled upon a strange and ancient organism that would lead him toward the elusive isotope and, from there, the supernova.

The clue came in the form of microscopic fossils left behind by magnetotactic bacteria. At some point in their evolution, these oceanic organisms acquired iron-derived chains of magnetic crystals that allow them to travel along magnetic field lines in search of more suitable environments. They absorb small amounts of “rust dust” on the ocean floor — so Bishop thought they may have gobbled up the ashes of supernovae as well.

If this were true, the crystals would have fossilized after the bacteria died, and would now contain detectable traces of iron-60.

So, Bishop set out to study ocean sediment samples in search of magnetofossils. He and a colleague, Ramon Egli, developed a new chemical extraction technique, which allowed them to leach sediment with magnetic detection, advancing the work of his colleagues from two decades earlier.

After a painstaking investigation, Bishop and his colleagues found what they were looking for: magnetofossils and iron-60 atoms in a handful of sediment samples.

“The microfossils are the crystal chains of magnetite, which the bacteria made when they were alive,” Bishop says, “and which remain behind in the sediment for crazy people like me to discover two million years later.”

However, the seven samples they discovered were hardly enough to make a detection claim.

They were, however, enough to intrigue Anton Wallner of The Australian National University, who organized his own team to conduct similar studies and also identified iron-60 in seabed sediment. In joint papers published in the journal Nature, Wallner and his team detailed evidence of a series of supernovae, the nearest of which may been been just 326 light years from Earth.

Air bubbles under the ice in winter
Air bubbles under the ice in winter NASA

Bishop and his team followed up with a confirmation study this year, published in Proceedings of the National Academy of Science, in which they expanded the candidate samples from seven to more than 80. “But it took time to do this,” he says, “and experimental care” because the detection of iron-60 has to be so precise.

In the study, Iron-60 signals increase about 2.6 million years ago, suggesting that the supernova ashes entered Earth’s atmosphere shortly before a major ice age and massive marine die-off swept the planet. Bishop suggests the findings raise big questions.

“Could it have had an influence on the climate, causing it to cool?” he asks. “And then, did the cooling cause that extinction?” Perhaps the supernova itself caused the extinction by killing off phytoplankton with cosmic rays. Or was it both of these combined? Or neither?

“We don’t know,” he says.

In the subsequent investigation, Bishop hopes to see researchers from across the sciences get on the case. Theoretical physicists, for example, could help develop realistic models to determine the effects of such an event on Earth’s biosphere. Paleontologists, paleobiologists, and geologists could scan fossil records in search of other “smoking guns.”

“I hope our results will trigger clever scientists in those fields to brainstorm ideas to find additional circumstantial evidence on our planet that could point in the direction of causation, rather than mere coincidence,” he adds.

“Until then, all we can say is that there is this astronomical — pun intended — coincidence of the supernova event arriving on Earth with the climate change and extinction event. But coincidence is not scientific proof of cause.”

Dyllan Furness
Dyllan Furness is a freelance writer from Florida. He covers strange science and emerging tech for Digital Trends, focusing…
NASA hears Voyager ‘heartbeat’ as it tries to reconnect with spacecraft
An artist's concept of the Voyager 2 spacecraft

NASA has received a signal from the Voyager 2 spacecraft that it accidentally lost contact with on July 21.

Communications with the famous spacecraft, which launched in 1977 and is currently around 12.4 billion miles (19.9 billion kilometers) from Earth, were cut after NASA “inadvertently” sent it a command that caused its antenna to point 2 degrees away from Earth.

Read more
NASA’s skywatching tips for August include a famous meteor shower
samsung galaxy s21 ultra vs huawei p40 pro plus 10x zoom shootout moon

What's Up: August 2023 Skywatching Tips from NASA

NASA has just released its monthly update on what to look out for in the skies over the next few weeks, with Saturn, the Perseid meteors, and a "super blue moon" all featuring.
Saturn
With Venus and Mars having slipped from view for the time being, we can turn our gaze toward Saturn instead. The second planet in our solar system reaches opposition this month, meaning it's directly opposite the sun as seen from Earth. It'll be appearing just after sunset and will remain visible until dawn, giving us plenty of time to check it out. On the morning of August 3, Saturn will be viewable right beside the moon.

Read more
NASA reveals new date for Crew-7 mission to space station
The International Space Station pictured from the SpaceX Crew Dragon Endeavour during a fly-around of the orbiting lab.

The four crew members of NASA’s SpaceX Crew-7 mission inside SpaceX Hangar X at NASA’s Kennedy Space Center. From left to right: Konstantin Borisov, Andreas Mogensen, Jasmin Moghbeli, and Satoshi Furukawa. SpaceX

UPDATE: NASA had moved the targeted launch date from August 17 to August 21. But it's now targeting Friday, August 25. This article has been updated to reflect the change.

Read more