Skip to main content

How bacteria, rust dust, and a murdered star may explain Earth’s Ice Age


Many millions of years ago, time and gravity colluded to kill a star.

Its core collapsed within seconds, fused heavy metals, and hurled them into outer space in a cataclysmic blast. A supergiant — reduced to a cloud of dust and gas.

Recommended Videos

The crime went unreported for eons. Then, about 2.6 million years ago, evidence began to land on Earth. Heavy atoms ejected from the supernova broke through the planet’s atmosphere and settled on its surface as isotopes.

Now, scientists say they’ve uncovered clues to the crime. But something seems suspicious. Soon after the aftermath arrived on Earth, our planet fell into a major ice age — leading many investigators to see the supernova as both victim and accomplice.

Astrophysicist Shawn Bishop has been searching for signs for years. In 1999, his future colleagues at the Technical University of Munich (TUM) discovered an exotic isotope known as iron-60 in the Earth’s crust. It wasn’t expected to be there. Iron-60 is rare on Earth and any of it leftover from the planet’s birth has long since dissipated. This isotope must have extraterrestrial origins, and scientists suspect a supernova may have been the cause.

But the iron-60 signals the researchers originally found were few and far between. The scientists needed more evidence and a better way to detect it.

He stumbled upon a strange and ancient organism that would lead him toward the elusive isotope and, from there, the supernova.

Bishop joined the squad when he arrived at TUM in 2008. One day while searching for clues, he had a flashback to a NASA scientist’s presentation, which pointed out that nano-sized crystals left behind by bacteria could offer fossilized evidence of cosmic events. “So I began to ‘read the literature,'” Bishop tells Digital Trends.

Soon, he stumbled upon a strange and ancient organism that would lead him toward the elusive isotope and, from there, the supernova.

The clue came in the form of microscopic fossils left behind by magnetotactic bacteria. At some point in their evolution, these oceanic organisms acquired iron-derived chains of magnetic crystals that allow them to travel along magnetic field lines in search of more suitable environments. They absorb small amounts of “rust dust” on the ocean floor — so Bishop thought they may have gobbled up the ashes of supernovae as well.

If this were true, the crystals would have fossilized after the bacteria died, and would now contain detectable traces of iron-60.

So, Bishop set out to study ocean sediment samples in search of magnetofossils. He and a colleague, Ramon Egli, developed a new chemical extraction technique, which allowed them to leach sediment with magnetic detection, advancing the work of his colleagues from two decades earlier.

After a painstaking investigation, Bishop and his colleagues found what they were looking for: magnetofossils and iron-60 atoms in a handful of sediment samples.

“The microfossils are the crystal chains of magnetite, which the bacteria made when they were alive,” Bishop says, “and which remain behind in the sediment for crazy people like me to discover two million years later.”

However, the seven samples they discovered were hardly enough to make a detection claim.

They were, however, enough to intrigue Anton Wallner of The Australian National University, who organized his own team to conduct similar studies and also identified iron-60 in seabed sediment. In joint papers published in the journal Nature, Wallner and his team detailed evidence of a series of supernovae, the nearest of which may been been just 326 light years from Earth.

Air bubbles under the ice in winter
Air bubbles under the ice in winter NASA

Bishop and his team followed up with a confirmation study this year, published in Proceedings of the National Academy of Science, in which they expanded the candidate samples from seven to more than 80. “But it took time to do this,” he says, “and experimental care” because the detection of iron-60 has to be so precise.

In the study, Iron-60 signals increase about 2.6 million years ago, suggesting that the supernova ashes entered Earth’s atmosphere shortly before a major ice age and massive marine die-off swept the planet. Bishop suggests the findings raise big questions.

“Could it have had an influence on the climate, causing it to cool?” he asks. “And then, did the cooling cause that extinction?” Perhaps the supernova itself caused the extinction by killing off phytoplankton with cosmic rays. Or was it both of these combined? Or neither?

“We don’t know,” he says.

In the subsequent investigation, Bishop hopes to see researchers from across the sciences get on the case. Theoretical physicists, for example, could help develop realistic models to determine the effects of such an event on Earth’s biosphere. Paleontologists, paleobiologists, and geologists could scan fossil records in search of other “smoking guns.”

“I hope our results will trigger clever scientists in those fields to brainstorm ideas to find additional circumstantial evidence on our planet that could point in the direction of causation, rather than mere coincidence,” he adds.

“Until then, all we can say is that there is this astronomical — pun intended — coincidence of the supernova event arriving on Earth with the climate change and extinction event. But coincidence is not scientific proof of cause.”

Dyllan Furness
Former Digital Trends Contributor
Dyllan Furness is a freelance writer from Florida. He covers strange science and emerging tech for Digital Trends, focusing…
Departing ISS astronaut still finds time for stunning night shot
The Nile River, Nile Delta, and Cairo, as seen from the ISS.

NASA astronaut Matthew Dominick is preparing to fly home aboard a SpaceX Crew Dragon capsule at the end of the seven-month Crew-8 mission, but he recently found time to snap an incredible night shot featuring the Nile River, the Nile Delta, Cairo, and beyond.

“Moonlight illuminates Cairo and the Mediterranean on a mostly clear night," Dominick wrote in a message accompanying the photo that was shared on X (formerly Twitter) on Sunday.

Read more
Watch SpaceX’s Starship splashdown in the Indian Ocean at end of fifth test
SpaceX's Starship reentering Earth's atmosphere.

SpaceX’s Super Heavy rocket was the star of the show during last week’s test flight when it was successfully caught by the launch tower’s giant mechanical arms upon the first attempt.

Minutes earlier, the Super Heavy booster had deployed the upper-stage Starship spacecraft to orbit as part of the fifth test flight of the world’s most powerful rocket.

Read more
A Boeing-built satellite appears to have exploded in orbit
boeing satellite explodes intelsat 33e

Boeing's bad year in space continues. Following the troubled first crewed flight of its Starliner spacecraft, now a satellite designed and built by the company appears to have exploded in orbit. The Intelsat 33e satellite was reported to have experienced an anomaly last week, and now it has been confirmed that the satellite has been totally lost.

The satellite was part of the Epic constellation from satellite services provider Intelsat, and its loss caused an interruption in communication services for customers in Europe, Africa, and parts of the Asia-Pacific region. The U.S. Space Force confirmed that the satellite had broken up and that it was tracking 20 pieces of debris, according to SpaceNews.

Read more