Skip to main content

See elements as colors in this galaxy where stars are being born

From Hubble to the James Webb Space Telescope, when you think of the tools that capture images of space some of the first examples that come to mind are likely to be space-based telescopes. These telescopes have the advantage of being above the water vapor in Earth’s atmosphere which can distort readings, and allows them to look out at the universe in great detail. But there are advantages of ground-based telescopes as well, such as being able to build much larger structures and to more easily upgrade these telescopes with new instruments.

One such ground-based telescope is the European Southern Observatory (ESO)’s Very Large Telescope. As the name suggests it is indeed very large, being made up of four separate telescopes each of which has an 8.2-meter (27 feet) primary mirror and which work together to look out at space in the visible light and infrared wavelengths. On the telescope named Yepun sits an instrument called MUSE, or the Multi-Unit Spectroscopic Explorer (MUSE), which uses a technology called adaptive optics to collect high-resolution data about areas of space.

Spiral galaxy NGC 4303, also known as Messier 61,.
An image of the spiral galaxy NGC 4303, also known as Messier 61, which is one of the largest galactic members of the Virgo Cluster. Being a so-called starburst galaxy, it has an unusually high amount of stars being born and has been used by astronomers as a laboratory to better understand the fascinating phenomena of star formation. ESO/PHANGS

ESO recently shared this image taken by the MUSE instrument, showing the stunning spiral galaxy NGC 4303. This image represents spectroscopy data which has been colorized to show different elements which are present, collected as part of the Physics at High Angular resolution in Nearby GalaxieS (PHANGS) project. This galaxy is a type called a starburst galaxy, meaning it is a site of vigorous star formation, and studying it can help us learn about how stars are born.

Recommended Videos

“Stars form when clouds of cold gas collapse,” ESO explains. “The energetic radiation from newly born stars will heat and ionize the surrounding remaining gas. The ionized gas will shine, acting as a beacon of ongoing star formation. In this stunning and jewel-like image, this glowing gas can be seen as the whirlpool of gold: the direct traces of stars being born.

“The golden glow is a result of combining observations taken at different wavelengths of light with the Multi-Unit Spectroscopic Explorer (MUSE) instrument on ESO’s Very Large Telescope (VLT) in Chile. Here gas clouds of ionized oxygen, hydrogen, and sulfur are shown in blue, green, and red, respectively.”

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
See and hear Stephan’s Quintet in a whole new way with NASA visualizations
A new visualization explores the galaxy group Stephan's Quintet by using observations in visible, infrared, and X-ray light. The sequence contrasts images from NASA's Hubble Space Telescope, Spitzer Space Telescope, Webb Space Telescope, and Chandra X-ray Observatory to provide insights across the electromagnetic spectrum.

One of the first targets observed by the James Webb Space Telescope when it began science operations last year was Stephan's Quintet, a group of five galaxies locked close together in a complex structure. Now, that data from Webb has been combined with data from other telescopes to give a new view of this special object -- and even to create a way to listen to it.

The project used the infrared data from Webb combined with visible light, X-ray, and other infrared observations from the Hubble Space Telescope, the Spitzer Space Telescope, and the Chandra X-ray Observatory. By combining all these different views of the same object, researchers were able to create a 3D view of the group which is visualized in a video:

Read more
Peer inside the bar of a barred spiral galaxy in new James Webb image
A delicate tracery of dust and bright star clusters threads across this image from the NASA/ESA/CSA James Webb Space Telescope. The bright tendrils of gas and stars belong to the barred spiral galaxy NGC 5068, whose bright central bar is visible in the upper left of this image. NGC 5068 lies around 17 million light-years from Earth in the constellation Virgo.

The newest image from the James Webb Space Telescope shows a stunning display of dust and stars that form the bar of the barred spiral galaxy NCG 5068, located 17 million light-years away. Like our galaxy, the Milky Way, this galaxy has a central bar that is a more concentrated region of stars and dust compared to the arms that reach out from the galaxy's center.

The image was taken using two of Webb's instruments, the Mid-Infrared Instrument (MIRI) and the Near Infrared Camera (NIRCam). By looking in both the mid- and near-infrared wavelengths, Webb is able to pick out features like the swirls of dust and gas, as well as the stars in this region, with the bar of the galaxy glowing in the top left of the image.

Read more
See stunning images combining James Webb and Chandra X-ray data
james webb chandra images chandrawebb2 1

Since beginning science operations last summer, the James Webb Space Telescope has been providing a plethora of beautiful images of space. Now, NASA has shared a new view of some of those images, by combining infrared data from Webb with X-ray data from the Chandra X-Ray Observatory.

The four new images show a variety of cosmic objects like galaxies and nebulae, bringing together observations from different wavelengths to show features that wouldn't be visible in a single wavelength. As well as Webb and Chandra, the images also incorporate data from the Hubble Space Telescope, which operates in the visible light wavelength, the retired Spitzer Space Telescope which looked in the infrared, and the European Space Agency's XMM-Newton X-ray instrument and the European Southern Observatory's New Technology Telescope, which also operates in the visible wavelength.

Read more