Skip to main content

How NASA is dealing with micrometeoroids threatening James Webb

In June this year, NASA revealed that the James Webb Space Telescope had suffered from a micrometeoroid impact, in which a small space rock had caused some damage to one of the telescope’s 18 primary mirror segments. Although the damage was not serious enough to interfere with science operations, it did raise concerns about how much damage the telescope could suffer from similar impacts in the future. Now, NASA has shared its plan to deal with the issue of such impacts as Webb ages.

The Webb team knew that some impacts from micrometeoroids would be inevitable, as there are many such small particles in the area where Webb orbits around the sun. The telescope was designed to withstand small impacts, but a NASA working group concluded it was just bad luck that it was hit by a larger impact so soon after its launch in December 2021. An impact of that size was a “rare statistical event,” NASA said, both in that it was larger than most such impacts and that it happened to hit a particularly sensitive part of the telescope.

​​“We have experienced 14 measurable micrometeoroid hits on our primary mirror, and are averaging one to two per month, as anticipated. The resulting optical errors from all but one of these were well within what we had budgeted and expected when building the observatory,” said Mike Menzel, Webb lead mission systems engineer, in a statement. “One of these was higher than our expectations and prelaunch models; however, even after this event our current optical performance is still twice as good as our requirements.”

To protect Webb from such impacts in the future, the telescope will be used in such a way that it avoids facing the “micrometeoroid avoidance zone.” This helps avoid micrometeoroids striking the telescope’s primary mirror head-on, as these strikes are generally faster and are particularly damaging. The telescope will still be able to image all regions of the sky, but it will point at different regions at different times of the year to minimize the risk of impacts. This will begin with the second year of Webb science observations, called Cycle 2, which will start in July 2023.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
One galaxy, two views: see a comparison of images from Hubble and Webb
The peculiar galaxy NGC 3256 takes centre stage in this image from the NASA/ESA Hubble Space Telescope. This distorted galaxy is the wreckage of a head-on collision between two spiral galaxies which likely occurred 500 million years ago, and it is studded with clumps of young stars which were formed as gas and dust from the two galaxies collided.

It might not seem obvious why astronomers need multiple different powerful space telescopes. Surely a more powerful telescope is better than a less powerful one? So why are there multiple different telescopes in orbit, either around Earth or around the sun?

The answer is to do with two main factors. One is the telescope's field of view, meaning how much of the sky it looks at. Some telescopes are useful for looking at large areas of the sky in less detail, working as survey telescopes to identify objects for further research or to look at the universe on a large scale -- like the recently launched Euclid mission. While others, like the Hubble Space Telescope, look at small areas of the sky in great detail, which is useful for studying particular objects.

Read more
James Webb spots the most distant active supermassive black hole ever discovered
Crop of Webb's CEERS Survey image.

As well as observing specific objects like distant galaxies and planets here in our solar system, the James Webb Space Telescope is also being used to perform wide-scale surveys of parts of the sky. These surveys observe large chunks of the sky to identify important targets like very distant, very early galaxies, as well as observe intriguing objects like black holes. And one such survey has recently identified the most distant active supermassive black hole seen so far.

While a typical black hole might have a mass up to around 10 times that of the sun, supermassive black holes are much more massive, with a mass that can be millions or even billions of times the mass of the sun. These monsters are found at the heart of galaxies and are thought to play important roles in the formation and merging of galaxies.

Read more
Saturn as you’ve never seen it before, captured by Webb telescope
Saturn captured by the James Webb Space Telescope

NASA has shared a gorgeous image of Saturn captured recently by the James Webb Space Telescope (JWST).

Webb’s first near-infrared observations of the second largest planet in our solar system also show several of Saturn’s moons: Dione, Enceladus, and Tethys.

Read more