Skip to main content

How engineers are getting James Webb’s NIRSpec instrument ready for science

While engineers for the James Webb Space Telescope continue the long and delicate process of aligning its mirrors in order to get the telescope ready for science operations this summer, other teams are working on preparing the telescope’s four science instruments for operations. One of the instruments, the Near-Infrared Spectrograph (NIRSpec), recently hit a milestone when it completed initial check-outs for three of its mechanisms. Now, members of NASA and the European Space Agency (ESA) have shared more information about NIRSpec and how it is being prepared to investigate targets including some of the oldest galaxies in the universe.

There are three mechanisms crucial to the operation of NIRSpec: A Filter Wheel Assembly (FWA), a Grating Wheel Assembly (GWA), and a Refocus Mechanism Assembly (RMA). These work together to allow the operation of the spectrograph, which splits light into a color spectrum. By looking at the spectrum of light from distant objects, scientists can tell what those objects are made of, as different elements absorb light in different wavelengths.

To make sure only light within the wavelengths being investigated gets to the instrument, NIRSpec uses filters to block out unwanted wavelengths, and these filters are controlled by the FWA. To focus the light, the instrument uses the RMA. And the light is separated into a spectrum using gratings, a prism, and a mirror in the GWA.

The engineers described how they checked each of these components: “We operated the Filter Wheel Assembly first, cycling it through all eight of its positions in both forward and reverse directions… At each position, we recorded a set of reference data. This data showed us how well the wheel was moving and how accurately it settled into each position… The data showed that the wheel moved very well even in the first attempt.”

The operation of the GWA was similarly successful. “We then used a very similar procedure for the Grating Wheel Assembly, which also performed excellently the first time,” they wrote. And finally, the RMA mechanism, which will help to focus the instrument, was moved through a few hundred steps to check it could be positioned correctly. These tests went well too, with the team writing, “successful completion of this test showed us that the RMA is a well-behaved and healthy mechanism.”

Everything is looking good for NIRSpec, so now the instrument can continue being tested and calibrated ahead of its first science data collection in a few months. “In the coming months, the NIRSpec team will continue their commissioning efforts,” the team wrote. “The whole team is very much looking forward to the start of science observations this summer!”

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
How engineers on the ground fixed the Juice spacecraft’s stuck antenna
Juice flyby of Ganymede (artist’s impression)

Earlier this year, the European Space Agency (ESA)'s Juice spacecraft launched on its mission to investigate the icy moons of Jupiter. The launch went off smoothly, but there was a problem during the spacecraft deployment phase: an antenna was stuck and wasn't deploying properly. After several weeks of work and various attempts at fixes, the Juice team succeeded in getting the antenna deployed, and now ESA has shared more information about the problem and how it was solved.

The antenna that failed to deploy was the Radar for Icy Moons Exploration (RIME) antenna, a 16-meter-long radar instrument that will be used to study the icy crusts of Jupiter's moons like Ganymede, Europa, and Callisto. It was folded up on the side of the spacecraft for launch and should have deployed when it was unlatched once Juice was in space. On April 17, the team on the ground gave the command to activate an actuator which should have moved a pin to open a bracket and let sections of the antenna deploy into place.

Read more
One galaxy, two views: see a comparison of images from Hubble and Webb
The peculiar galaxy NGC 3256 takes centre stage in this image from the NASA/ESA Hubble Space Telescope. This distorted galaxy is the wreckage of a head-on collision between two spiral galaxies which likely occurred 500 million years ago, and it is studded with clumps of young stars which were formed as gas and dust from the two galaxies collided.

It might not seem obvious why astronomers need multiple different powerful space telescopes. Surely a more powerful telescope is better than a less powerful one? So why are there multiple different telescopes in orbit, either around Earth or around the sun?

The answer is to do with two main factors. One is the telescope's field of view, meaning how much of the sky it looks at. Some telescopes are useful for looking at large areas of the sky in less detail, working as survey telescopes to identify objects for further research or to look at the universe on a large scale -- like the recently launched Euclid mission. While others, like the Hubble Space Telescope, look at small areas of the sky in great detail, which is useful for studying particular objects.

Read more
James Webb spots the most distant active supermassive black hole ever discovered
Crop of Webb's CEERS Survey image.

As well as observing specific objects like distant galaxies and planets here in our solar system, the James Webb Space Telescope is also being used to perform wide-scale surveys of parts of the sky. These surveys observe large chunks of the sky to identify important targets like very distant, very early galaxies, as well as observe intriguing objects like black holes. And one such survey has recently identified the most distant active supermassive black hole seen so far.

While a typical black hole might have a mass up to around 10 times that of the sun, supermassive black holes are much more massive, with a mass that can be millions or even billions of times the mass of the sun. These monsters are found at the heart of galaxies and are thought to play important roles in the formation and merging of galaxies.

Read more