Skip to main content

Webb spots water vapor in a planet-forming disk

One of the big open questions about Earth and how life formed here is where the planet’s water came from. Water is essential to life as we know it, but many scientists think that water did not originally form on Earth — rather, it may have been carried here by asteroids. Recently, though, astronomers have discovered water vapor in the planet-forming region of a star, suggesting that future planets which form here might have access to water right from the start.

The study used the James Webb Space Telescope to look at star PDS 70, which is cooler and much younger than our sun. The star has two gas giant planets orbiting it, but it is also still forming planets and has two protoplanetary disks of dust and gas swirling around it. The inner disk, which is in a region comparable to the distance of the Earth from the sun, is where the water vapor was detected.

An artist's concept portraying the star PDS 70 and its inner protoplanetary disk.
This artist concept portrays the star PDS 70 and its inner protoplanetary disk. New measurements by NASA’s James Webb Space Telescope have detected water vapor at distances of less than 100 million miles from the star – the region where rocky, terrestrial planets may be forming. This is the first detection of water in the terrestrial region of a disk already known to host two or more protoplanets, one of which is shown at upper right. Joseph Olmsted (STScI) / NASA, ESA, CSA

“We’ve seen water in other disks, but not so close in and in a system where planets are currently assembling. We couldn’t make this type of measurement before Webb,” said lead author Giulia Perotti of the Max Planck Institute for Astronomy (MPIA) in a statement.

“This discovery is extremely exciting, as it probes the region where rocky planets similar to Earth typically form,” said co-author Thomas Henning, director of the MPIA.

Scientists are interested in where this water came from and how it was able to survive the turbulent environment close to the star. The young star gives off ultraviolet light, which usually destroys water molecules. In this case, the water vapor was among dust and other material which may have protected the water molecules and acted like a shield.

This means that planets forming in this inner disk would have access to water from the start. The researchers also saw the building blocks for planets such as silicates in the inner ring, so there could one day be Earth-like worlds formed there.

“We find a relatively high amount of small dust grains. Combined with our detection of water vapor, the inner disk is a very exciting place,” said co-author Rens Waters of Radboud University in The Netherlands.

The research is published in the journal Nature.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Zoom into stunning James Webb image to see a galaxy formed 13.4 billion years ago
A section of a James Webb image showing a small part of the Extended Groth Strip, located between the Ursa Major and Boötes constellations.

One of the amazing things about the James Webb Space Telescope is the level of detail it is able to capture of very distant objects -- but it can be hard to picture what that means when the distances being considered are so large. Now, a new visualization gives a feel of just how detailed the data from the telescope is, by showing how it's possible to start with a stunning view of thousands of galaxies and zoom closer and closer in until you reach just one.

CEERS: Flight to Maisie's Galaxy

Read more
Astronomers spot the shiniest exoplanet ever discovered
An artist impression of exoplanet LTT9779b orbiting its host star.

When you look up at the night sky you see mostly stars, not planets -- and that's simply because planets are so much smaller and dimmer than stars. But you can see planets in our solar system, like Venus, which is one of the brightest objects in the night sky. Due to its thick, dense atmosphere, Venus reflects 75% of the sun's light, making it shine brightly. Recently, though, astronomers discovered a planet that reflects even more of its star's light, making it the shiniest exoplanet ever found.

Exoplanet LTT9779 b reflects 80% of the light from its star, which it orbits very close to. That makes it extremely hot, and researchers believe that the planet is covered in clouds of silicate and liquid metal, which is what makes it so reflective.

Read more
Astronomers spot an exoplanet creating spiral arms around its star
The Large Binocular Telescope in Arizona. The LBTI instrument combines infrared light from both 8.4-meter mirrors to image planets and disks around young and nearby stars.

When you imagine a galaxy like our Milky Way, you're probably picturing a swirl shape with arms reaching out from a central point. These spiral arms are a classic feature of many galaxies. Similar structures can be found around young stars which are surrounded by disks of matter from which planets form, called protoplanetary disks. Now, astronomers have discovered evidence that these structures could be created by recently formed exoplanets.

Astronomers used Large Binocular Telescope in Arizona to investigate a giant exoplanet named MWC 758c which seems to be forming the spiral arms around its host star. Located 500 light-years away, the star is just a few million years old, making it a baby in cosmic terms. "Our study puts forward a solid piece of evidence that these spiral arms are caused by giant planets," said lead researcher Kevin Wagner of the University of Arizona in a statement. "And with the new James Webb Space Telescope, we will be able to further test and support this idea by searching for more planets like MWC 758c."

Read more