Skip to main content

Check out Webb telescope’s mind-blowing image of the Pillars of Creation

Thanks to the James Webb Space Telescope, clumps of gas and dust have never looked so beautiful.

The latest awe-inspiring image, beamed to Earth by the most powerful space telescope ever built, shows in astonishing detail the Pillars of Creation some 6,500 light-years away.

The Pillars of Creation, imaged by the James Webb Space Telescope
The Pillars of Creation are set off in a kaleidoscope of color in NASA’s James Webb Space Telescope’s near-infrared-light view. The pillars look like arches and spires rising out of a desert landscape, but are filled with semi-transparent gas and dust, and ever changing. This is a region where young stars are forming – or have barely burst from their dusty cocoons as they continue to form. Credits: NASA, ESA, CSA, STScI; Joseph DePasquale (STScI), Anton M. Koekemoer (STScI), Alyssa Pagan (STScI)

Webb’s near-infrared image also shows the countless stars that formed within the dense clouds of gas and dust, as well as the youngest ones currently emerging from those clouds.

Tour the Webb Telescope’s Pillars of Creation

“The three-dimensional pillars look like majestic rock formations, but are far more permeable,” NASA said of the image. “These columns are made up of cool interstellar gas and dust that appear, at times, semi-transparent in near-infrared light.”

Recommended Videos

Captured by Webb’s Near-Infrared Camera (NIRCam), the image shows glowing red blobs at the end of some of the pillars, indicating areas where young stars are ejecting material as they form.

“When knots with sufficient mass form within the pillars of gas and dust, they begin to collapse under their own gravity, slowly heat up, and eventually form new stars,” NASA explained, adding that these new stars appear in Webb’s image as bright red orbs and are estimated to be only a few hundred thousand years old.

The Pillars of Creation gained widespread attention in 1995 when it was captured by NASA’s Hubble Space Telescope. Hubble imaged it again in 2014 — you can compare it with Webb’s effort below:

The Pillars of Creation imaged by Hubble and Webb.
NASA’s Hubble Space Telescope made the Pillars of Creation famous with its first image in 1995, but revisited the scene in 2014 to reveal a sharper, wider view in visible light, shown above at left. A new, near-infrared-light view from NASA’s James Webb Space Telescope, at right, helps us peer through more of the dust in this star-forming region. The thick, dusty brown pillars are no longer as opaque and many more red stars that are still forming come into view. Credits: NASA, ESA, CSA, STScI; Joseph DePasquale (STScI), Anton M. Koekemoer (STScI), Alyssa Pagan (STScI)

Webb’s image will enable researchers to update their models of star formation, the space agency said, helping us to learn more about how stars develop before they burst out of these dusty clouds over a period of millions of years.

After launching in December 2021, the Webb telescope is now in an orbit around a million miles from Earth as it peers toward deep space in a bid to learn more about the origins of the universe. Besides exploring areas of interest many light-years away, Webb is also taking time to image celestial bodies closer to home, with this image of Jupiter showing the planet as you’ve never seen it before.

Trevor Mogg
Contributing Editor
Not so many moons ago, Trevor moved from one tea-loving island nation that drives on the left (Britain) to another (Japan)…
James Webb Telescope captures gorgeous galaxy with a hungry monster at its heart
Featured in this new image from the NASA/ESA/CSA James Webb Space Telescope is Messier 106, also known as NGC 4258. This is a nearby spiral galaxy that resides roughly 23 million light-years away in the constellation Canes Venatici, practically a neighbour by cosmic standards. Messier 106 is one of the brightest and nearest spiral galaxies to our own and two supernovae have been observed in this galaxy in 1981 and 2014.

A new image from the James Webb Space Telescope shows off a nearby galaxy called Messier 106 -- a spiral galaxy that is particularly bright. At just 23 million light-years away (that's relatively close by galactic standards), this galaxy is of particular interest to astronomers due to its bustling central region, called an active galactic nucleus.

The high level of activity in this central region is thought to be due to the monster that lurks at the galaxy's heart. Like most galaxies including our own, Messier 106 has an enormous black hole called a supermassive black hole at its center. However, the supermassive black hole in Messier 106 is particularly active, gobbling up material like dust and gas from the surrounding area. In fact, this black hole eats so much matter that as it spins, it warps the disk of gas around it, which creates streamers of gas flying out from this central region.

Read more
James Webb takes rare direct image of a nearby super-Jupiter
Artist’s impression of a cold gas giant orbiting a red dwarf. Only a point of light is visible on the JWST/MIRI images. Nevertheless, the initial analysis suggests the presence of a gaseous planet that may have properties similar to Jupiter.

Even with huge ground-based observatories and the latest technology in space-based telescopes, it's still relatively rare for astronomers to take an image of an exoplanet. Planets outside our solar system are so far away and so small and dim compared to the stars they orbit that it's extremely difficult to study them directly. That's why most observations of exoplanets are made by studying their host stars. Now, though, the James Webb Space Telescope has directly imaged a gas giant -- and it's one of the coldest exoplanets observed so far.

The planet, named Epsilon Indi Ab, is located 12 light-years away and has an estimated temperature of just 35 degrees Fahrenheit (2 degrees Celsius). The fact it is so cool compared to most exoplanets meant that Webb's sensitive instruments were needed to study it.

Read more
One half of this wild exoplanet reaches temperatures of 1,450 degrees Fahrenheit
webb wasp 39b dayside nightside stsci 01j2f12rm1s3n39yj938nhsf93 png

This artist’s concept shows what the exoplanet WASP-39 b could look like based on indirect transit observations from JWST and other space- and ground-based telescopes. Data collected by its NIRSpec (Near-Infrared Spectrograph) show variations between the morning and evening atmosphere of the planet. NASA, ESA, CSA, Ralf Crawford (STScI)

One of the ground-breaking abilities of the James Webb Space Telescope is that researchers can use it to not only detect distant planets but also to peer into their atmosphere. Now, new research using Webb has uncovered differing conditions between morning and evening on a distant exoplanet, the first time such differences have been observed on a planet outside our solar system.

Read more