Skip to main content

James Webb telescope searches for habitability in the famous TRAPPIST-1 system

Tech For Change
This story is part of Tech for Change: an ongoing series in which we shine a spotlight on positive uses of technology, and showcase how they're helping to make the world a better place.

Of all the planets we’ve discovered beyond our solar system, the majority are not Earth-like at all. They are most often gas giants like Jupiter that orbit very close to their stars, making them extremely hot. These are also generally the easiest type of exoplanet to detect. Very few of the thousands of discovered exoplanets could be potentially habitable — fewer than 50 in total. That’s why astronomers were so excited by the finding in 2017 of a system called TRAPPIST-1, which has seven rocky Earth-sized exoplanets, four of which are in the habitable zone.

But TRAPPIST-1 is a long way away, at 40 light-years’ distance, so it isn’t easy to see these planets in detail. Astronomers had some information about the planets’ sizes and orbits, but to really know if life could ever have emerged there, they needed information on the planets’ atmospheres. And the James Webb Space Telescope provided the means to investigate that.

This artist’s concept portrays the seven rocky exoplanets within the TRAPPIST-1 system, located 40 light-years from Earth. NASA/JPL-Caltech/R. Hurt (IPAC)

“We want to know if rocky planets have atmospheres or not,” said Sebastian Zieba, lead author of Webb’s research into the TRAPPIST-1 system, in a statement. “In the past, we could only really study planets with thick, hydrogen-rich atmospheres. With Webb, we can finally start to search for atmospheres dominated by oxygen, nitrogen, and carbon dioxide.”

Recommended Videos

The recent study looked at TRAPPIST-1 c, which was thought to be a Venus-like planet that was tidally locked to its star — so one side, the dayside, would always be facing the star and would have a temperature of about 225 degrees Fahrenheit. “TRAPPIST-1 c is interesting because it’s basically a Venus twin: It’s about the same size as Venus and receives a similar amount of radiation from its host star as Venus gets from the sun,” explained co-author Laura Kreidberg. “We thought it could have a thick carbon dioxide atmosphere like Venus.”

This artist' concept shows what the hot rocky exoplanet TRAPPIST-1 c could look like based on this work. TRAPPIST-1 c, the second of seven known planets in the TRAPPIST-1 system, orbits its star at a distance of 0.016 AU (about 1.5 million miles), completing one circuit in just 2.42 Earth-days. TRAPPIST-1 c is slightly larger than Earth, but has around the same density, which indicates that it must have a rocky composition. Webb’s measurement of 15-micron mid-infrared light emitted by TRAPPIST-1 c suggests that the planet has either a bare rocky surface or a very thin carbon dioxide atmosphere.
This artist’s concept shows what the hot, rocky exoplanet TRAPPIST-1 c could look like. Webb’s measurement of 15-micron mid-infrared light emitted by TRAPPIST-1 c suggests that the planet has either a bare rocky surface or a very thin carbon dioxide atmosphere. NASA, ESA, CSA, Joseph Olmsted (STScI)

However, when the researchers used Webb to observe TRAPPIST-1 c’s atmosphere, they found it was very different from Venus’s thick, carbon dioxide-rich atmosphere. Instead, the planet has an extremely thin atmosphere — if it has an atmosphere at all.

The results are something of a disappointment for those hoping to find habitability, as it means that the planet probably formed without much water. And it’s possible that the other planets in the system could have formed without water too, making it less likely that they could be habitable.

Even though the results are not what was expected, they are still an exciting demonstration of how technology has developed to allow us to see exoplanet atmospheres. “It is extraordinary that we can measure this,” said Kreidberg. “There have been questions for decades now about whether rocky planets can keep atmospheres. Webb’s ability really brings us into a regime where we can start to compare exoplanet systems to our solar system in a way that we never have before.”

The research is published in the journal Nature.

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
One half of this wild exoplanet reaches temperatures of 1,450 degrees Fahrenheit
webb wasp 39b dayside nightside stsci 01j2f12rm1s3n39yj938nhsf93 png

This artist’s concept shows what the exoplanet WASP-39 b could look like based on indirect transit observations from JWST and other space- and ground-based telescopes. Data collected by its NIRSpec (Near-Infrared Spectrograph) show variations between the morning and evening atmosphere of the planet. NASA, ESA, CSA, Ralf Crawford (STScI)

One of the ground-breaking abilities of the James Webb Space Telescope is that researchers can use it to not only detect distant planets but also to peer into their atmosphere. Now, new research using Webb has uncovered differing conditions between morning and evening on a distant exoplanet, the first time such differences have been observed on a planet outside our solar system.

Read more
Webb captures a Penguin and an Egg for its two-year anniversary
This “penguin party” is loud! The distorted spiral galaxy at center, the Penguin, and the compact elliptical galaxy at left, the Egg, are locked in an active embrace. A new near- and mid-infrared image from the James Webb Space Telescope, taken to mark its second year of science, shows that their interaction is marked by a faint upside-down U-shaped blue glow.

This “penguin party” is loud! The distorted spiral galaxy at center, called the Penguin, and the compact elliptical galaxy at left, called the Egg, are locked in an active embrace. A new near- and mid-infrared image from the James Webb Space Telescope, taken to mark its second year of science, shows that their interaction is marked by a faint upside-down U-shaped blue glow. NASA, ESA, CSA, STScI

Today, July 12, marks two years since the first images from the James Webb Space Telescope were unveiled. In that time, Webb has discovered the most distant galaxies known, uncovered surprises about the early universe, peered into the atmospheres of distant planets, and produced a plethora of beautiful images of space.

Read more
James Webb snaps a colorful image of a star in the process of forming
L1527, shown in this image from NASA’s James Webb Space Telescope’s MIRI (Mid-Infrared Instrument), is a molecular cloud that harbors a protostar. It resides about 460 light-years from Earth in the constellation Taurus. The more diffuse blue light and the filamentary structures in the image come from organic compounds known as polycyclic aromatic hydrocarbons (PAHs), while the red at the center of this image is an energized, thick layer of gases and dust that surrounds the protostar. The region in between, which shows up in white, is a mixture of PAHs, ionized gas, and other molecules.

L1527, shown in this image from NASA’s James Webb Space Telescope’s MIRI (Mid-Infrared Instrument), is a molecular cloud that harbors a protostar. It resides about 460 light-years from Earth in the constellation Taurus. NASA, ESA, CSA, STScI

A stunning new image from the James Webb Space Telescope shows a young star called a protostar and the huge outflows of dust and gas that are thrown out as it consumes material from its surrounding cloud. This object has now been observed using two of Webb's instruments: a previous version that was taken in the near-infrared with Webb's NIRCam camera, and new data in the mid-infrared taken with Webb's MIRI instrument.

Read more