Skip to main content

This oddball pair of stars is producing dust shells like clockwork

The James Webb Space Telescope has spotted an intriguing object created by a rare pair of stars that are encircled by rings of dust. The pair, known as Wolf-Rayet 140, is located 5,000 light-years away and could us learn about the interstellar medium between stars and how stars form.

This system consists of two stars, one older and massive of a type called a Wolf-Rayet star, and the other hot a blue-white type called an O-type star. And they orbit in such a way that they come close together once every eight years. When that happens, the stellar winds that each star gives off begin to interact. This interaction causes the large Wolf-Rayet star to shed some of its stellar material, which forms dust.

Shells of cosmic dust created by the interaction of binary stars appear like tree rings around Wolf-Rayet 140.
Shells of cosmic dust created by the interaction of binary stars appear like tree rings around Wolf-Rayet 140. The remarkable regularity of the shells’ spacing indicates that they form like clockwork during the stars’ eight-year orbit cycle, when the two members of the binary make their closest approach to one another. In this image, blue, green, and red were assigned to Webb’s Mid-Infrared Instrument (MIRI) data at 7.7, 15, and 21 microns (F770W, F1500W, and F2100W filters, respectively). NASA, ESA, CSA, STScI, NASA-JPL, Caltech

It is this formation of dust every eight years which creates the dust shells seen in the image above. Each interaction creates a new shell, and at least 17 of these shells are visible in the Webb data, showing over 130 years of history between the two stars.

“We’re looking at over a century of dust production from this system,” said lead author Ryan Lau, an astronomer at NSF’s NOIRLab, in a statement. “The image also illustrates just how sensitive this telescope is. Before, we were only able to see two dust rings, using ground-based telescopes. Now we see at least 17 of them.”

Webb was able to see the many shells using its Mid-Infrared instrument, which allowed the researchers to use different filters to see the chemical composition of the dust shells. They found they are made of compounds called Polycyclic Aromatic Hydrocarbons (PAHs), which are found in the space between stars — called the interstellar medium — and which play an important role in how stars form. There are only around 600 Wolf-Rayet stars known, but there could be evidence of many more in our galaxy.

“Even though Wolf-Rayet stars are rare in our galaxy because they are short-lived as far as stars go, it’s possible they’ve been producing lots of dust throughout the history of the galaxy before they explode and/or form black holes,” said co-author Patrick Morris of Caltech. “I think with NASA’s new space telescope we’re going to learn a lot more about how these stars shape the material between stars and trigger new star formation in galaxies.”

The research is published in the journal Nature Astronomy.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
One galaxy, two views: see a comparison of images from Hubble and Webb
The peculiar galaxy NGC 3256 takes centre stage in this image from the NASA/ESA Hubble Space Telescope. This distorted galaxy is the wreckage of a head-on collision between two spiral galaxies which likely occurred 500 million years ago, and it is studded with clumps of young stars which were formed as gas and dust from the two galaxies collided.

It might not seem obvious why astronomers need multiple different powerful space telescopes. Surely a more powerful telescope is better than a less powerful one? So why are there multiple different telescopes in orbit, either around Earth or around the sun?

The answer is to do with two main factors. One is the telescope's field of view, meaning how much of the sky it looks at. Some telescopes are useful for looking at large areas of the sky in less detail, working as survey telescopes to identify objects for further research or to look at the universe on a large scale -- like the recently launched Euclid mission. While others, like the Hubble Space Telescope, look at small areas of the sky in great detail, which is useful for studying particular objects.

Read more
James Webb spots the most distant active supermassive black hole ever discovered
Crop of Webb's CEERS Survey image.

As well as observing specific objects like distant galaxies and planets here in our solar system, the James Webb Space Telescope is also being used to perform wide-scale surveys of parts of the sky. These surveys observe large chunks of the sky to identify important targets like very distant, very early galaxies, as well as observe intriguing objects like black holes. And one such survey has recently identified the most distant active supermassive black hole seen so far.

While a typical black hole might have a mass up to around 10 times that of the sun, supermassive black holes are much more massive, with a mass that can be millions or even billions of times the mass of the sun. These monsters are found at the heart of galaxies and are thought to play important roles in the formation and merging of galaxies.

Read more
Saturn as you’ve never seen it before, captured by Webb telescope
Saturn captured by the James Webb Space Telescope

NASA has shared a gorgeous image of Saturn captured recently by the James Webb Space Telescope (JWST).

Webb’s first near-infrared observations of the second largest planet in our solar system also show several of Saturn’s moons: Dione, Enceladus, and Tethys.

Read more